Способы изменения внутренней энергии тела. SA

Поэтому, изменяя температуру тела, мы изменяем и его внутреннюю энергию.При нагревании тела его внутренняя энергия увеличивается, при охлаждении уменьшается.

Проделаем опыт. Укрепим на подставке тонкостенную латунную трубку. Нальем в нее немного эфира и плотно закроем пробкой. Теперь обовьем трубку веревкой и начнем натирать ею трубку, быстро вытягивая в веревку то в одну, то в другую сторону. Через В некоторое время внутренняя энергия трубки с эфиром возрастет настолько, что эфир закипит и образовавшийся пар вытолкнет пробку (рис. 60).

Этот опыт показывает, что внутреннюю энергию тела можно изменить путем совершения над телом работы, в частности трением.

Изменяя внутреннюю энергию куска дерева путем трения, наши предки добывали огонь. Температура воспламенения дерева равна 250 °С. Поэтому, чтобы получить огонь, нужно тереть одним куском дерева по другому до тех пор, пока их температура не достигнет этого значения. Легко ли это? Когда таким способом попробовали добыть огонь герои романа Жюля Верна "Таинственный остров" , у них ничего не вышло.

"Если бы энергию, которую затратили Наб с Пенкрофом, можно было превратить в тепло, ее, наверное, хватило бы для отопления котла океанского парохода. Но результат их усилий равнялся нулю. Куски дерева, правда, разогрелись, но значительно меньше, чем сами участники этой операции.

После часа работы Пенкроф был весь в поту и с досадой отбросил куски дерева, сказав:
- Не говорите мне, что дикари добывают огонь таким образом! Я скорее поверю, что летом идет снег. Легче, пожалуй, зажечь собственные ладони, потирая их одну о другую".

Причина их неудачи заключалась в том, что огонь следовало добывать не простым трением одного куска дерева о другой, а сверлением дощечки заостренной палочкой (рис. 61). Тогда при определенной сноровке можно за 1 с увеличить температуру в гнезде палочки на 20 °С. А чтобы довести палочку до горения, потребуется всего лишь 250/20=12,5 секунды!

Многие люди и в наше время "добывают" огонь трением - трением спичек о спичечный коробок. Давно ли появились спички? Производство первых (фосфорных) спичек началось в 30-х гг. XIX в. Фосфор загорается при достаточно слабом нагревании - всего до 60 °С. Поэтому, чтобы зажечь фосфорную спичку, достаточно было чиркнуть ею практически о любую поверхность (начиная от ближайшей стены и кончая голенищем сапог). Однако эти спички были очень опасны: они были ядовиты и из-за легкого возгорания часто служили причиной пожара. Безопасные спички (которыми мы пользуемся до сих пор) были изобретены в 1855 г. в Швеции (отсюда их название "шведские спички"). Фосфор в этих спичках заменен другими горючими веществами.

Итак, путем трения можно повысить температуру вещества. Совершая над телом работу (например, ударяя по куску свинца молотком, сгибая и разгибая проволоку, перемещая один предмет по поверхности другого или сжимая газ, находящийся в цилиндре с поршнем), мы увеличиваем его внутреннюю энергию. Если же тело само совершает работу"(за счет своей внутренней энергии), то внутренняя энергия тела уменьшается и тело охлаждается.

Пронаблюдаем это на опыте. Возьмем толстостенный стеклянный сосуд и плотно закроем его резиновой пробкой с отверстием. Через это отверстие с помощью насоса начнем накачивать в сосуд воздух . Через некоторое время пробка с шумом вылетит из сосуда, а в самом сосуде появится туман (рис. 62). Появление тумана означает, что воздух в сосуде стал холоднее и, следовательно, его внутренняя энергия уменьшилась. Объясняется это тем, что находившийся в сосуде сжатый воздух, выталкивая пробку, совершил работу за счет уменьшения своей внутренней энергии. Поэтому температура воздуха и понизилась.

Внутреннюю энергию тела можно изменить и без совершения работы. Так, например, ее можно увеличить, нагрев на плите чайник с водой или опустив ложку в стакан с горячим чаем. Нагревается камин, в котором разведен огонь, крыша дома, освещаемая солнцем, и т. д. Повышение температуры тел во всех этих случаях означает увеличение их внутренней энергии, но это увеличение происходит без совершения работы.

Изменение внутренней энергии тела без совершения работы называется теплообменом . Теплообмен возникает между телами (или частями одного и того же тела), имеющими разную температуру.

Как, например, происходит теплообмен при контакте холодной ложки с горячей водой? Сначала средняя скорость и кинетическая энергия молекул горячей воды превышают среднюю скорость и кинетическую энергию частиц металла, из которого изготовлена ложка. Но в тех местах, где ложка соприкасается с водой, молекулы горячей воды начинают передавать часть своей кинетической энергии частицам ложки, и те начинают двигаться быстрее. Кинетическая энергия молекул воды при этом уменьшается, а кинетическая энергия частиц ложки увеличивается. Вместе с энергией изменяется и температура: вода постепенно остывает, а ложка нагревается. Изменение их температуры происходит до тех пор, пока она и у воды, и у ложки не станет одинаковой.

Часть внутренней энергии, переданной от одного тела к другому при теплообмене, обозначают буквой и называютколичеством теплоты .
Q - количество теплоты.

Количество теплоты не следует путать с температурой. Температура измеряется в градусах, а количество теплоты (как и любая другая энергия) - в джоулях.

При контакте тел с разной температурой более горячее тело отдает некоторое количество теплоты, а более холодное тело его получает.

Итак, существуют два способа изменения внутренней энергии: 1)совершение работы и 2) теплообмен . При осуществлении первого из этих способов внутренняя энергия тела изменяется на величину совершенной работы А, а при осуществлении второго из них - на величину, равную количеству переданной теплоты Q

Интересно, что оба рассмотренных способа могут приводить к совершенно одинаковым результатам. Поэтому по конечному результату невозможно определить, каким именно из этих способов он достигнут. Так, взяв со стола нагретую стальную спицу, мы не сможем сказать, каким способом ее нагрели - путем трения или соприкосновения с горячим телом. В принципе могло быть как то, так и другое.

1. Назовите два способа изменения внутренней энергии тела. 2. Приведите примеры увеличения внутренней энергии тела путем совершения над ним работы. 3. Приведите примеры увеличения и уменьшения внутренней энергии тела в результате теплообмена. 4. Что такое количество теплоты? Как оно обозначается? 5. В каких единицах измеряется количество теплоты? 6. Какими способами можно добыть огонь? 7. Когда началось производство спичек?

Прижмите монету или кусочек фольги к картону или какой-либо дощечке. Сделав сначала 10, затем 20 и т. д. движений то в одну, то в другую сторону, заметьте, что происходит с температурой тел в процессе трения. Как зависит изменение внутренней энергии тела от величины совершенной работы?

Отослано читателями из интернет-сайтов

Электронные издания бесплатно, библиотека физики , уроки физики, программа с физики, конспекты уроков физики, учебники по физике, готовые домашние задания

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Согласно MKT все вещества состоят из частиц, которые находятся в непрерывном тепловом движении и взаимодействуют друг с другом. Поэтому, даже если тело неподвижно и имеет нулевую потенциальную энергию, оно обладает энергией (внутренней энергией), представляющей собой суммарную энергию движения и взаимодействия микрочастиц, составляющих тело. В состав внутренней энергии входят:

  1. кинетическая энергия поступательного, вращательного и колебательного движения молекул;
  2. потенциальная энергия взаимодействия атомов и молекул;
  3. внутриатомная и внутриядерная энергии.

В термодинамике рассматриваются процессы при температурах, при которых не возбуждается колебательное движение атомов в молекулах, т.е. при температурах, не превышающих 1000 К. В этих процессах изменяются только первые две составляющие внутренней энергии. Поэтому

под внутренней энергией в термодинамике понимают сумму кинетической энергии всех молекул и атомов тела и потенциальной энергии их взаимодействия.

Внутренняя энергия тела определяет его тепловое состояние и изменяется при переходе из одного состояния в другое. В данном состоянии тело обладает вполне определенной внутренней энергией, не зависящей от того, в результате какого процесса оно перешло в данное состояние. Поэтому внутреннюю энергию очень часто называют функцией состояния тела .

\(~U = \dfrac {i}{2} \cdot \dfrac {m}{M} \cdot R \cdot T,\)

где i - степень свободы. Для одноатомного газа (например, инертные газы) i = 3, для двухатомного - i = 5.

Из этих формул видно, что внутренняя энергия идеального газа зависит только от температуры и числа молекул и не зависит ни от объема, ни от давления. Поэтому изменение внутренней энергии идеального газа определяется только изменением его температуры и не зависит от характера процесса, в котором газ переходит из одного состояния в другое:

\(~\Delta U = U_2 - U_1 = \dfrac {i}{2} \cdot \dfrac{m}{M} \cdot R \cdot \Delta T ,\)

где ΔT = T 2 - T 1 .

  • Молекулы реальных газов взаимодействуют между собой и поэтому обладают потенциальной энергией W p , которая зависит от расстояния между молекулами и, следовательно, от занимаемого газом объема. Таким образом, внутренняя энергия реального газа зависит от его температуры, объема и структуры молекул.

*Вывод формулы

Средняя кинетическая энергия молекулы \(~\left\langle W_k \right\rangle = \dfrac {i}{2} \cdot k \cdot T\).

Число молекул в газе \(~N = \dfrac {m}{M} \cdot N_A\).

Следовательно, внутренняя энергия идеального газа

\(~U = N \cdot \left\langle W_k \right\rangle = \dfrac {m}{M} \cdot N_A \cdot \dfrac {i}{2} \cdot k \cdot T .\)

Учитывая, что k⋅N A = R - универсальная газовая постоянная, имеем

\(~U = \dfrac {i}{2} \cdot \dfrac {m}{M} \cdot R \cdot T\) - внутренняя энергия идеального газа.

Изменение внутренней энергии

Для решения практических вопросов существенную роль играет не сама внутренняя энергия, а ее изменение ΔU = U 2 - U 1 . Изменение же внутренней энергии рассчитывают, исходя из законов сохранения энергии.

Внутренняя энергия тела может изменяться двумя способами:

  1. При совершении механической работы . а) Если внешняя сила вызывает деформацию тела, то при этом изменяются расстояния между частицами, из которых оно состоит, а следовательно, изменяется потенциальная энергия взаимодействия частиц. При неупругих деформациях, кроме того, изменяется температура тела, т.е. изменяется кинетическая энергия теплового движения частиц. Но при деформации тела совершается работа, которая и является мерой изменения внутренней энергии тела. б) Внутренняя энергия тела изменяется также при его неупругом соударении с другим телом. Как мы видели раньше, при неупругом соударении тел их кинетическая энергия уменьшается, она превращается во внутреннюю (например, если ударить несколько раз молотком по проволоке, лежащей на наковальне, - проволока нагреется). Мерой изменения кинетической энергии тела является, согласно теореме о кинетической энергии, работа действующих сил. Эта работа может служить и мерой изменения внутренней энергии. в) Изменение внутренней энергии тела происходит под действием силы трения, поскольку, как известно из опыта, трение всегда сопровождается изменением температуры трущихся тел. Работа силы трения может служить мерой изменения внутренней энергии.
  2. При помощи теплообмена . Например, если тело поместить в пламя горелки, его температура изменится, следовательно, изменится и его внутренняя энергия. Однако никакая работа здесь не совершалась, ибо не происходило видимого перемещения ни самого тела, ни его частей.

Изменение внутренней энергии системы без совершения работы называется теплообменом (теплопередачей).

Существует три вида теплообмена: теплопроводность, конвекция и излучение.

а) Теплопроводностью называется процесс теплообмена между телами (или частями тела) при их непосредственном контакте, обусловленный тепловым хаотическим движением частиц тела. Амплитуда колебаний молекул твердого тела тем больше, чем выше его температура. Теплопроводность газов обусловлена обменом энергией между молекулами газа при их столкновениях. В случае жидкостей работают оба механизма. Теплопроводность вещества максимальна в твердом и минимальна в газообразном состоянии.

б) Конвекция представляет собой теплопередачу нагретыми потоками жидкости или газа от одних участков занимаемого ими объема в другие.

в) Теплообмен при излучении осуществляется на расстоянии посредством электромагнитных волн.

Рассмотрим более подробно способы изменения внутренней энергии.

Механическая работа

При рассмотрении термодинамических процессов механическое перемещение макротел в целом не рассматривается. Понятие работы здесь связывается с изменением объема тела, т.е. перемещением частей макротела друг относительно друга. Процесс этот приводит к изменению расстояния между частицами, а также часто к изменению скоростей их движения, следовательно, к изменению внутренней энергии тела.

Изобарный процесс

Рассмотрим вначале изобарный процесс. Пусть в цилиндре с подвижным поршнем находится газ при температуре T 1 (рис. 1).

Будем медленно нагревать газ до температуры T 2 . Газ будет изобарически расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Δl . Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = p⋅S тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле

\(~A = F \cdot \Delta l = p \cdot S \cdot \Delta l = p \cdot \Delta V,\)

где ΔV - изменение объема газа.

  • Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.
  • Газ выполняет работу только в процессе изменения своего объема.

При расширении (ΔV > 0) газа совершается положительная работа (А > 0); при сжатии (ΔV < 0) газа совершается отрицательная работа (А < 0).

  • Если рассматривать работу внешних сил A " (А " = –А ), то при расширении (ΔV > 0) газа А " < 0); при сжатии (ΔV < 0) А " > 0.

Запишем уравнение Клапейрона-Менделеева для двух состояний газа:

\(~p \cdot V_1 = \nu \cdot R \cdot T_1, \; \; p \cdot V_2 = \nu \cdot R \cdot T_2,\)

\(~p \cdot (V_2 - V_1) = \nu \cdot R \cdot (T_2 - T_1) .\)

Следовательно, при изобарном процессе

\(~A = \nu \cdot R \cdot \Delta T .\)

Если ν = 1 моль, то при ΔΤ = 1 К получим, что R численно равна A .

Отсюда вытекает физический смысл универсальной газовой постоянной : она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.

Не изобарный процесс

На графике p (V ) при изобарном процессе работа равна площади заштрихованного на рисунке 2, а прямоугольника.

Если процесс не изобарный (рис. 2, б), то кривую функции p = f (V ) можно представить как ломаную, состоящую из большого количества изохор и изобар. Работа на изохорных участках равна нулю, а суммарная работа на всех изобарных участках будет равна

\(~A = \lim_{\Delta V \to 0} \sum^n_{i=1} p_i \cdot \Delta V_i\), или \(~A = \int p(V) \cdot dV,\)

т.е. будет равна площади заштрихованной фигуры .

При изотермическом процессе (Т = const) работа равна площади заштрихованной фигуры, изображенной на рисунке 2, в.

Определить работу, используя последнюю формулу, можно только в том случае, если известно, как изменяется давление газа при изменении его объема, т.е. известен вид функции p = f (V ).

Таким образом, видно, что даже при одном и том же изменении объема газа работа будет зависеть от способа перехода (т.е. от процесса: изотермический, изобарный …) из начального состояния газа в конечное. Следовательно, можно сделать вывод, что

  • Работа в термодинамике является функцией процесса и не является функцией состояния.

Количество теплоты

Как известно, при различных механических процессах происходит изменение механической энергии W . Мерой изменения механической энергии является работа сил, приложенных к системе:

\(~\Delta W = A.\)

При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.

Количество теплоты - это мера изменения внутренней энергии в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны внутренней энергии. Они не характеризуют само состояние системы (как это делает внутренняя энергия), а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что

  • работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю);
  • количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

Нагревание (охлаждение)

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры T 1 до температуры T 2 , рассчитывается по формуле

\(~Q = c \cdot m \cdot (T_2 - T_1) = c \cdot m \cdot \Delta T,\)

где c - удельная теплоемкость вещества (табличная величина);

\(~c = \dfrac{Q}{m \cdot \Delta T}.\)

Единицей удельной теплоемкости в СИ является джоуль на килограмм-Кельвин (Дж/(кг·К)).

Удельная теплоемкость c численно равна количеству теплоты, которое необходимо сообщить телу массой 1 кг, чтобы нагреть его на 1 К.

Кроме удельной теплоемкости рассматривают и такую величину, как теплоемкость тела.

Теплоемкость тела C численно равна количеству теплоты, необходимому для изменения температуры тела на 1 К:

\(~C = \dfrac{Q}{\Delta T} = c \cdot m.\)

Единицей теплоемкости тела в СИ является джоуль на Кельвин (Дж/К).

Парообразование (конденсация)

Для превращения жидкости в пар при неизменной температуре необходимо затратить количество теплоты

\(~Q = L \cdot m,\)

где L - удельная теплота парообразования (табличная величина). При конденсации пара выделяется такое же количество теплоты.

Единицей удельной теплоты парообразования в СИ является джоуль на килограмм (Дж/кг).

Плавление (кристаллизация)

Для того чтобы расплавить кристаллическое тело массой m при температуре плавления, необходимо телу сообщить количество теплоты

\(~Q = \lambda \cdot m,\)

где λ - удельная теплота плавления (табличная величина). При кристаллизации тела такое же количество теплоты выделяется.

Единицей удельной теплоты плавления в СИ является джоуль на килограмм (Дж/кг).

Сгорание топлива

Количество теплоты, которое выделяется при полном сгорании топлива массой m ,

\(~Q = q \cdot m,\)

где q - удельная теплота сгорания (табличная величина).

Единицей удельной теплоты сгорания в СИ является джоуль на килограмм (Дж/кг).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 129-133, 152-161.

Внутреннюю энергию можно изменить двумя способами.

Если работа совершается над телом, его внутренняя энергия увеличивается.


Если работу совершает само тело, его внутренняя энергия уменьшается.

Всего существует три простых (элементарных) вида передачи тепла:

· Теплопроводность

· Конвекция

Конвекция — явление переноса теплоты в жидкостях или газах, или сыпучих средах потоками вещества. Существует т. н. естественная конвекция , которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется снова и снова.

Тепловое излучение или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии.

Внутренняя энергия идеального газа

Исходя из определения идеального газа , в нем отсутствует потенциальная составляющая внутренней энергии (отсутствуют силы взаимодействия молекул, кроме ударного). Таким образом, внутренняя энергия идеального газа представляет собой только кинетическую энергию движения его молекул. Ранее (уравнение 2.10) было показано, что кинетическая энергия поступательного движения молекул газа прямо пропорциональна его абсолютной температуре.

Используя выражение универсальной газовой постоянной (4.6), можно определить величину константы α.

Таким образом, кинетическая энергия поступательного движения одной молекулы идеального газа будет определяться выражением.

В соответствии с кинетической теорией, распределение энергии по степеням свободы равномерное. У поступательного движения 3 степени свободы. Следовательно, на одну степень свободы движения молекулы газа будет приходиться 1/3 ее кинетической энергии.

Для двух, трех и многоатомных молекул газа кроме степеней свободы поступательного движения есть степени свободы вращательного движения молекулы. Для двухатомных молекул газа число степеней свободы вращательного движения равно 2, для трех и многоатомных молекул - 3.

Поскольку распределение энергии движения молекулы по всем степеням свободы равномерное, а число молекул в одном киломоле газа равняется Nμ, внутреннюю энергию одного киломоля идеального газа можно получить, умножив выражение (4.11) на число молекул в одном киломоле и на число степеней свободы движения молекулы данного газа.


где Uμ - внутренняя энергия киломоля газа в Дж/кмоль, i - число степеней свободы движения молекулы газа.

Для 1 - атомного газа i = 3, для 2 - атомного газа i = 5, для 3 - атомного и многоатомного газов i = 6.

Электрический ток. Условия существования электрического тока. ЭДС. Закон Ома для полной цепи. Работа и мощность тока. Закон Джоуля-Ленца.

Среди условий, необходимых для существования электрического тока различают: наличие в среде свободных электрических зарядов и создание в среде электрического поля . Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = qE, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника.

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля. Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы). Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Условия существования электрического тока:

· наличие свободных носителей зарядов

· наличие разности потенциалов. это условия возникновения тока. чтобы ток существовал

· замкнутая цепь

· источник сторонних сил, который поддерживает разность потенциалов.

Любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил, называют сторонними силами.

Электродвижущая сила.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

Единицей ЭДС, как и напряжения является вольт. Можно говорить об электродвижущей силе на любом участке цепи. Электродвижущая сила гальванического элемента численно равна работе сторонних сил при перемещении единичного положительного заряда внутри элемента от отрицательного его полюса к положительному. Знак ЭДС определяется в зависимости от произвольно выбранного направления обхода того участка цепи, на котором включен данный источник тока.

Закон Ома для полной цепи.

Рассмотрим простейшую полную цепь, состоящую из источника тока и резистора сопротивлением R. Источник тока имеющий ЭДС ε, обладает сопротивлением r, его называют внутренним сопротивлением источника тока. Для получения закона ома для полной цепи используем закон сохранения энергии.

Пусть за время Δt через поперечное сечение проводника пройдет заряд q. Тогда по формуле , работа сторонних сил при перемещении заряда q равна . Из определения силы тока имеем: q = IΔt. Следовательно, .

Благодаря работе внешних сил при прохождении тока в цепи на ее внешнем и внутреннем участках цепи выделяется количество теплоты, по закону Джоуля-Ленца равное:

Согласно закону сохранения энергии A ст = Q, поэтому Отсюда Таким образом, ЭДС источника тока равна сумме падений напряжений на внешнем и внутреннем участках цепи.

Внутренняя энергия тела может передаваться и путем совершения работы. Так, при обработке детали на станке нагреваются резец и деталь, что указывает на увеличение их внутренней энергии. В процессе совершения работы по накачиванию воздуха в автомобильную или футбольную камеры по той же причине нагреваются насос и сжатый воздух. В рассмотренных примерах возрастание внутренней энергии тел происходит за счет увеличения в результате нагревания кинетической энергии их молекул.

Если взять два куска льда при температуре 0°С и начать и тереть друг о друга, то лед будет таять. Таяние льда происходит при постоянной температуре, следовательно, кинетическая энергия его молекул не увеличивается. В этом случае энергия, затраченная на совершение работы против сил трения, пошла на увеличение потенциальной энергии воды, которая получилась из; льда. Таким образом, на основе рассмотренных примеров и опытов приходим к выводу, что внутренняя энергия тела увеличивается, если над ним совершает работу другое тело.

Немецкий ученый Майер и английский ученый Джоуль доказали (первый в 1824 г. теоретически, второй в 1843 г.- опытно), что если внутренняя энергия тела (системы тел) увеличивается вследствие совершения над ним работы, то это увеличение равно совершенной работе.

Был проделан следующий опыт. Равномерно падающие грузы Р посредством шнуров А 1 и А 2 приводили во вращение мешалку В, помещенную во внутренний сосуд калориметра (рис. 26). В последнем находилась ртуть. Ее температура в начале и в конце опыта измерялась термометром С. Для увеличения трения между мешалкой и ртутью внутренние стенки калориметра имели пластинки Д. При вращении мешалки между ее лопастями и ртутью, а также между ртутью и пластинками возникало трение. В результате совершенной работы против сил трения произошло увеличение внутренней энергии ртути и калориметра, о чем свидетельствовало повышение их температуры. Джоуль подсчитал совершенную работу и вызванное ею увеличение внутренней энергии. За n раз опускания и подъема груза совершенная работа A = 2Phn . Увеличение внутренней энергии ртути и калориметра ΔU = с р m р Δt° + c k m k Δt° оказалось равным совершенной работе А = ΔU.

Находящийся в бутылке сжатый воздух, охлажденный до комнатной температуры, заставим совершать работу против сил внешнего давления и вращать вертушку (рис. 27). Термометр, помещенный в струю воздуха, совершающего работу, показывает, что его температура стала ниже. Пар и газ, совершая работу в двигателях, также охлаждаются. Значит, внутренняя энергия тела уменьшается, если за счет нее тело совершает работу.

И при теплообмене, и при совершении работы cmΔt 0 есть изменение внутренней энергии. В первом случае оно обозначается Q и называется количеством теплоты, а во втором случае так и называется изменением внутренней энергии и обозначается ΔU = cmΔt° . При изменении внутренней энергии путем совершения работы нельзя пользоваться термином "количество теплоты".

Работа является универсальной формой передачи энергии; в процессе работы могут происходить превращения любых видов энергии, в том числе механической, во внутреннюю и наоборот. Теплообмен - это специфическая форма передачи внутренней энергии и притом только от нагретого тела к холодному.

Для решения практических вопросов существенную роль играет не сама внутренняя энергия, а ее изменение ΔU = U 2 - U 1 . Изменение же внутренней энергии рассчитывают, исходя из законов сохранения энергии.

Внутренняя энергия тела может изменяться двумя способами:

1. При совершении механической работы .

а) Если внешняя сила вызывает деформацию тела, то при этом изменяются расстояния между частицами, из которых оно состоит, а следовательно, изменяется потенциальная энергия взаимодействия частиц. При неупругих деформациях, кроме того, изменяется температура тела, т.е. изменяется кинетическая энергия теплового движения частиц. Но при деформации тела совершается работа, которая и является мерой изменения внутренней энергии тела.

б) Внутренняя энергия тела изменяется также при его неупругом соударении с другим телом. Как мы видели раньше, при неупругом соударении тел их кинетическая энергия уменьшается, она превращается во внутреннюю (например, если ударить несколько раз молотком по проволоке, лежащей на наковальне, - проволока нагреется). Мерой изменения кинетической энергии тела является, согласно теореме о кинетической энергии, работа действующих сил. Эта работа может служить и мерой изменения внутренней энергии.

в) Изменение внутренней энергии тела происходит под действием силы трения, поскольку, как известно из опыта, трение всегда сопровождается изменением температуры трущихся тел. Работа силы трения может служить мерой изменения внутренней энергии.

2. При помощи теплообмена . Например, если тело поместить в пламя горелки, его температура изменится, следовательно, изменится и его внутренняя энергия. Однако никакая работа здесь не совершалась, ибо не происходило видимого перемещения ни самого тела, ни его частей.

Изменение внутренней энергии системы без совершения работы называется теплообменом (теплопередачей).

Существует три вида теплообмена: теплопроводность, конвекция и излучение.

а) Теплопроводностью называется процесс теплообмена между телами (или частями тела) при их непосредственном контакте, обусловленный тепловым хаотическим движением частиц тела. Амплитуда колебаний молекул твердого тела тем больше, чем выше его температура. Теплопроводность газов обусловлена обменом энергией между молекулами газа при их столкновениях. В случае жидкостей работают оба механизма. Теплопроводность вещества максимальна в твердом и минимальна в газообразном состоянии.

б) Конвекция представляет собой теплопередачу нагретыми потоками жидкости или газа от одних участков занимаемого ими объема в другие.

в) Теплообмен при излучении осуществляется на расстоянии посредством электромагнитных волн.

Рассмотрим более подробно способы изменения внутренней энергии.

Количество теплоты

Как известно, при различных механических процессах происходит изменение механической энергии W . Мерой изменения механической энергии является работа сил, приложенных к системе:

При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.

Количество теплоты - это мера изменения внутренней энергии в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны внутренней энергии. Они не характеризуют само состояние системы (как это делает внутренняя энергия), а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что

§ работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю);

§ количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

§ Теплоемкость , количество теплоты, затрачиваемое для изменения температуры на 1°С. Согласно более строгому определению, теплоемкость - термодинамическая величина, определяемая выражением:

§ где ΔQ - количество теплоты, сообщенное системе и вызвавшее изменение ее температуры на Delta;T. Отношение конечных разностей ΔQ /ΔТ называется средней теплоемкостю , отношение бесконечно малых величин dQ/dT - истинной теплоемкостю . Поскольку dQ не является полным дифференциалом функции состояния, то итеплоемкость зависит от пути перехода между двумя состояниями системы. Различают теплоемкость системы в целом (Дж/К), удельную теплоемкость [Дж/(г·К)], молярную теплоемкость [Дж/(моль·К)]. Во всех ниже приведенных формулах использованы молярные величины теплоемкости .

Вопрос 32:

Внутреннюю энергию можно изменить двумя способами.

Количеством теплоты (Q) называется изменение внутренней энергии тела, происходящее в результате теплопередачи.

Количество теплоты измеряется в системе СИ в джоулях.
[Q] = 1Дж.

Удельная теплоемкость вещества показывает, какое количество теплоты необходимо, чтобы изменить температуру единицы массы данного вещества на 1°С.
Единица удельной теплоемкости в системе СИ:
[c] = 1Дж/кг·градусС.

Вопрос 33:

33 Первое начало термодинамики количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами. dQ=dU+dA,где dQ-элементарное кол-во теплоты,dA-элементарная работа,dU-приращение внутренней энергии. Применение первого начала термодинамики к изопроцессам
Среди равновесных процессов, происходящих с термодинамическими системами, выде­ляются изопроцессы , при которых один из основных параметров состояния сохраняется постоянным.
Изохорный процесс (V =const). Диаграмма этого процесса(изохора) в координатах р, V изображается прямой, параллельной оси ординат (рис. 81), где процесс 1-2 есть изохорное нагревание, а 1 -3 - изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, Изотермический процесс (T =const). Как уже указывалось § 41, изотермический процесс описывается законом Бойля-Мариотта
, для того чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.

Вопрос 34:

34 Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ= 0)между системой и окружающей средой. К адиабатическим процессам можно отнести все быстропротекающие процессы. Например, адиабатическим процессом можно счи­тать процесс распространения звука в среде, так как скорость распространения звуко­вой волны настолько велика, что обмен энергией между волной и средой произойти не успевает. Адиабатические процессы применяются в двигателях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д.
Из первого начала термодинамики (dQ= dU+dA ) для адиабатического процесса следует, что
p /С V =γ , найдем

Проинтегрируя уравнение в пределах от p 1 до p 2 и соответственно от V 1 до V 2 , и потенцируя, придем к выражению

Так как состояния 1 и 2 выбраны произвольно, то можно записать

Похожие публикации