Квантование энергии частицы. Оценка средней энергии для разных l и m

Борис Аркадьевич Хренов,
доктор физико-математических наук , Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына МГУ им. М. В. Ломоносова

«Наука и жизнь» №10, 2008

Прошло без малого сто лет с того момента, как были открыты космические лучи - потоки заряженных частиц, приходящих из глубин Вселенной. С тех пор сделано много открытий, связанных с космическими излучениями, но и загадок остаётся ещё немало. Одна из них, возможно, наиболее интригующая: откуда берутся частицы с энергией более 10 20 эВ, то есть почти миллиард триллионов электронвольт, в миллион раз большей, чем будет получена в мощнейшем ускорителе - Большом адронном коллайдере? Какие силы и поля разгоняют частицы до таких чудовищных энергий?

Космические лучи открыл в 1912 году австрийский физик Виктор Гесс. Он был сотрудником Радиевого института Вены и проводил исследования ионизированных газов. К тому времени уже знали, что все газы (и атмосфера в том числе) всегда слегка ионизованы, что свидетельствовало о присутствии радиоактивного вещества (подобного радию) либо в составе газа, либо вблизи прибора, измеряющего ионизацию, вероятнее всего - в земной коре. Опыты с подъёмом детектора ионизации на воздушном шаре были задуманы для проверки этого предположения, так как с удалением от поверхности земли ионизация газа должна уменьшаться. Ответ получился противоположный: Гесс обнаружил некое излучение, интенсивность которого росла с высотой. Это наводило на мысль, что оно приходит из космоса, но окончательно доказать внеземное происхождение лучей удалось только после многочисленных опытов (Нобелевскую премию В. Гессу присудили лишь в 1936 году). Напомним, что термин «излучение» не означает, что эти лучи имеют чисто электромагнитную природу (как солнечный свет, радиоволны или рентгеновское излучение); его использовали при открытии явления, природа которого ещё не была известна. И хотя вскоре выяснилось, что основная компонента космических лучей - ускоренные заряженные частицы, протоны, термин сохранился. Изучение нового явления быстро стало давать результаты, которые принято относить к «передовому краю науки».

Открытие космических частиц очень высокой энергии сразу же (ещё задолго до того, как был создан ускоритель протонов) вызвало вопрос: каков механизм ускорения заряженных частиц в астрофизических объектах? Сегодня мы знаем, что ответ оказался нетривиальным: природный, «космический» ускоритель кардинально отличается от ускорителей рукотворных.

Вскоре выяснилось, что космические протоны, пролетая сквозь вещество, взаимодействуют с ядрами его атомов, рождая неизвестные до этого нестабильные элементарные частицы (их наблюдали в первую очередь в атмосфере Земли). Исследование механизма их рождения открыло плодотворный путь для построения систематики элементарных частиц. В лаборатории протоны и электроны научились ускорять и получать огромные их потоки, несравнимо более плотные, чем в космических лучах. В конечном счете, именно опыты по взаимодействию частиц, получивших энергию в ускорителях, привели к созданию современной картины микромира.

В 1938 году французский физик Пьер Оже открыл замечательное явление - ливни вторичных космических частиц, которые возникают в результате взаимодействия первичных протонов и ядер экстремально высоких энергий с ядрами атомов атмосферы. Оказалось, что в спектре космических лучей есть частицы с энергией порядка 10 15 –10 18 эВ - в миллионы раз больше энергии частиц, ускоряемых в лаборатории. Академик Дмитрий Владимирович Скобельцын придал особое значение изучению таких частиц и сразу после войны, в 1947 году, вместе с ближайшими коллегами Г. Т. Зацепиным и Н. А. Добротиным организовал комплексные исследования каскадов вторичных частиц в атмосфере, названных широкими атмосферными ливнями (ШАЛ). Историю первых исследований космических лучей можно найти в книгах Н. Добротина и В. Росси. Со временем школа Д.В. Скобельцына выросла в одну из самых сильных в мире и долгие годы определяла основные направления в изучении космических лучей сверхвысоких энергий. Её методы позволили расширить диапазон исследуемых энергий от 10 9 –10 13 эВ, регистрируемых на воздушных шарах и спутниках, до 10 13 –10 20 эВ. Особенно привлекательными эти исследования делали два аспекта.

Во-первых, появилась возможность использовать созданные самой природой протоны высокой энергии для изучения их взаимодействия с ядрами атомов атмосферы и расшифровки самой тонкой структуры элементарных частиц.

Во-вторых, возникла вероятность отыскать в космосе объекты, способные ускорить частицы до экстремально высоких энергий.

Первый аспект оказался не столь плодотворным, как хотелось: изучение тонкой структуры элементарных частиц потребовало гораздо больше данных о взаимодействии протонов, чем позволяют получить космические лучи. Вместе с тем важный вклад в представления о микромире дало изучение зависимости самых общих характеристик взаимодействия протонов от их энергии. Именно при изучении ШАЛ обнаружили особенность в зависимости количества вторичных частиц и их распределения по энергиям от энергии первичной частицы, связанную с кварк-глюонной структурой элементарных частиц. Эти данные позже подтвердились в опытах на ускорителях.

Сегодня построены достоверные модели взаимодействия космических лучей с ядрами атомов атмосферы, позволившие изучить энергетический спектр и состав их первичных частиц самых высоких энергий. Стало ясно, что космические лучи в динамике развития Галактики играют не меньшую роль, чем её поля и потоки межзвёздного газа: удельная энергия космических лучей, газа и магнитного поля примерно равны 1 эВ в см 3 . При таком балансе энергии в межзвёздной среде естественно предположить, что ускорение частиц космических лучей происходит, скорее всего, в тех же объектах, которые отвечают за нагревание и выброс газа, например в Новых и Сверхновых звёздах при их взрыве.

Первый механизм ускорения космических лучей предложил Энрико Ферми для протонов, хаотически сталкивающихся с намагниченными облаками межзвёздной плазмы, но не смог объяснить всех экспериментальных данных. В 1977 году академик Гермоген Филиппович Крымский показал, что этот механизм должен гораздо сильней ускорять частицы в остатках Сверхновых на фронтах ударных волн, скорости которых на порядки выше скоростей облаков. Сегодня достоверно показано, что механизм ускорения космических протонов и ядер ударной волной в оболочках Сверхновых наиболее эффективен. Но воспроизвести его в лабораторных условиях вряд ли удастся: ускорение происходит сравнительно медленно и требует огромных затрат энергии для удержания ускоренных частиц. В оболочках Сверхновых эти условия существуют благодаря самой природе взрыва. Замечательно, что ускорение космических лучей происходит в уникальном астрофизическом объекте, который отвечает за синтез тяжёлых ядер (тяжелее гелия), действительно присутствующих в космических лучах.

В нашей Галактике известны несколько Сверхновых возрастом меньше тысячи лет, которые наблюдались невооружённым глазом. Наиболее известны Крабовидная туманность в созвездии Тельца («Краб» - остаток вспышки Сверхновой в 1054 году, отмеченной в восточных летописях), Кассиопея-А (её наблюдал в 1572 году астроном Тихо Браге) и Сверхновая Кеплера в созвездии Змееносца (1680). Диаметры их оболочек сегодня составляют 5–10 световых лет (1 св. год = 10 16 м), то есть они расширяются со скоростью порядка 0,01 скорости света и находятся на расстояниях примерно десять тысяч световых лет от Земли. Оболочки Сверхновых («туманностей») в оптическом, в радио-, рентгеновском и гамма-диапазонах наблюдали космические обсерватории Чандра, Хаббл и Спитцер. Они достоверно показали, что в оболочках действительно происходит ускорение электронов и протонов, сопровождаемое рентгеновским излучением.

Наполнить межзвёздное пространство космическими лучами с измеренной удельной энергией (~1 эВ в см 3) могли бы около 60 остатков Сверхновых моложе 2000 лет, в то время как их известно менее десяти. Эта нехватка объясняется тем, что в плоскости Галактики, там, где сосредоточены звёзды и Сверхновые в том числе, очень много пыли, которая не пропускает свет к наблюдателю на Земле. Наблюдения в рентгеновском и гамма-излучениях, для которых пылевой слой прозрачен, позволили расширить список наблюдаемых «молодых» Сверхновых оболочек. Последней из таких вновь открытых оболочек стала Сверхновая G1.9+0.3, наблюдаемая с помощью рентгеновского телескопа «Чандра» начиная с января 2008 года. Оценки размера и скорости расширения её оболочки показывают, что она вспыхнула примерно 140 лет назад, но не была видна в оптическом диапазоне из-за полного поглощения её света пылевым слоем Галактики.

К данным о Сверхновых, взрывающихся в нашей Галактике Млечный Путь, добавляются значительно более богатые статистические данные о Сверхновых в других галактиках. Прямым подтверждением присутствия ускоренных протонов и ядер служит гамма-излучение с высокой энергией фотонов, возникающих в результате распада нейтральных пионов - продуктов взаимодействия протонов (и ядер) с веществом источника. Такие фотоны самых высоких энергий наблюдают с помощью телескопов, регистрирующих свечение Вавилова-Черенкова, излучаемое вторичными частицами ШАЛ. Самый совершенный инструмент такого типа - установка из шести телескопов, созданная при сотрудничестве HESS в Намибии. Гамма-излучение Краба было измерено первым, и его интенсивность стала мерой интенсивности для других источников.

Полученный результат не только подтверждает наличие механизма ускорения протонов и ядер в Сверхновой, но и позволяет также оценить спектр ускоренных частиц: спектры «вторичных» гамма-квантов и «первичных» протонов и ядер весьма близки. Магнитное поле в Крабе и его размер допускают ускорение протонов до энергий порядка 10 15 эВ. Спектры частиц космических лучей в источнике и в межзвёздной среде несколько отличаются, так как вероятность выхода частиц из источника и время жизни частиц в Галактике зависят от энергии и заряда частицы. Сравнение энергетического спектра и состава космических лучей, измеренных у Земли, со спектром и составом в источнике позволило понять, как долго путешествуют частицы среди звёзд. Ядер лития, бериллия и бора в космических лучах у Земли оказалось значительно больше, чем в источнике, - их дополнительное количество появляется в результате взаимодействия более тяжёлых ядер с межзвёздным газом. Измерив эту разность, вычислили количество X того вещества, через которое прошли космические лучи, блуждая в межзвёздной среде. В ядерной физике количество вещества, которое встречает частица на своём пути, измеряют в г/см 2 . Это связано с тем, что для вычисления уменьшения потока частиц в столкновениях с ядрами вещества надо знать число столкновений частицы с ядрами, имеющими разную поперечную к направлению частицы площадь (сечение). Выражая количество вещества в этих единицах, для всех ядер получается единая шкала измерения.

Экспериментально найденное значение X ~ 5 –10 г/см 2 позволяет оценить время жизни t космических лучей в межзвёздной среде: t X c , где c - скорость частиц, примерно равная скорости света, ρ ~10 –24 г/см 3 - средняя плотность межзвёздной среды. Отсюда время жизни космических лучей - порядка 10 8 лет. Это время намного превышает время пролёта частицы, двигающейся со скоростью с по прямой от источника до Земли (3·10 4 лет для самых далёких источников на противоположной от нас стороне Галактики). Это означает, что частицы движутся не по прямой, а испытывают рассеяние. Хаотические магнитные поля галактик с индукцией В ~10 –6 гаусса (10 –10 тесла) движут их по окружности радиусом (гирорадиусом) R = E /3 × 10 4 B, где R в м, E - энергия частицы в эВ, В - индукция магнитного поля в гауссах. При умеренных энергиях частиц E

Приблизительно по прямой приходить от источника будут только частицы с энергией E > 10 19 эВ. Поэтому направление создающих ШАЛ частиц с энергией менее 10 19 эВ не указывает на их источник. В этой области энергий остаётся только наблюдать вторичные излучения, генерируемые в самих источниках протонами и ядрами космических лучей. В доступной для наблюдения области энергий гамма-излучения (E

Представление о космических лучах как «местном» галактическом явлении оказалось верно лишь для частиц умеренных энергий E

В 1958 году Георгий Борисович Христиансен и Герман Викторович Куликов открыли резкое изменение вида энергетического спектра космических лучей при энергии порядка 3·10 15 эВ. При энергиях меньше этого значения экспериментальные данные о спектре частиц обычно представляли в «степенном» виде так, что число частиц N с заданной энергией E считалось обратно пропорциональным энергии частицы в степени γ: N (E ) = a /E γ (γ - дифференциальный показатель спектра). До энергии 3·10 15 эВ показатель γ = 2,7, но при переходе к большим энергиям энергетический спектр испытывает «излом»: для энергий E > 3·10 15 эВ γ становится 3,15. Это изменение спектра естественно связать с приближением энергии ускоренных частиц к максимально возможному значению, вычисленному для механизма ускорения в Сверхновых. В пользу такого объяснения излома спектра говорит и ядерный состав первичных частиц в области энергий 10 15 –10 17 эВ. Наиболее надёжные сведения о нём дают комплексные установки ШАЛ - «МГУ», «Тунка», «Тибет», «Каскад». С их помощью получают не только сведения об энергии первичных ядер, но и параметры, зависящие от их атомных номеров, - «ширину» ливня, соотношения между количеством электронов и мюонов, между количеством самых энергичных электронов и общим их количеством. Все эти данные свидетельствуют, что с ростом энергии первичных частиц от левой границы спектра до его излома к энергии после излома происходит увеличение их средней массы. Такое изменение состава частиц по массам согласуется с моделью ускорения частиц в Сверхновых - оно ограничено максимальной энергией, зависящей от заряда частицы. Для протонов эта максимальная энергия порядка 3·10 15 эВ и увеличивается пропорционально заряду ускоряемой частицы (ядра), так что ядра железа эффективно ускоряются вплоть до ~10 17 эВ. Интенсивность потоков частиц с энергией, превышающей максимальную, быстро падает.

Но регистрация частиц ещё больших энергий (~3·10 18 эВ) показала, что спектр космических лучей не только не обрывается, но возвращается к виду, наблюдаемому до излома!

Измерения энергетического спектра в области «ультравысокой» энергии (E > 10 18 эВ) очень трудны из-за малого количества таких частиц. Для наблюдения этих редких событий необходимо создавать сеть из детекторов потока частиц ШАЛ и порождённых ими в атмосфере излучения Вавилова - Черенкова и ионизационного излучения (флуоресценции атмосферы) на площади в сотни и даже тысячи квадратных километров. Для подобных больших, комплексных установок выбирают места с ограниченной хозяйственной деятельностью, но с возможностью обеспечить надёжную работу огромного числа детекторов. Такие установки были построены сначала на площадях в десятки квадратных километров (Якутск, Хавера Парк, Акено), затем в сотни (AGASA, Fly"s Eyе, HiRes), и, наконец, сейчас создаются установки в тысячи квадратных километров (обсерватория Пьер Оже в Аргентине, Телескопическая установка в штате Юта, США).

Следующим шагом в изучении космических лучей ультравысокой энергии станет развитие метода регистрации ШАЛ по наблюдению флуоресценции атмосферы из космоса. В кооперации с несколькими странами в России создаётся первый космический детектор ШАЛ, проект ТУС. Ещё один такой детектор предполагается установить на Международной космической станции МКС (проекты JEM-EUSO и КЛПВЭ).

Что мы сегодня знаем о космических лучах ультравысокой энергии? На нижнем рисунке представлен энергетический спектр космических лучей с энергией выше 10 18 эВ, который получен на установках последнего поколения (HiRes, обсерватория Пьер Оже) вместе с данными о космических лучах меньших энергий, которые, как было показано выше, принадлежат Галактике Млечный Путь. Видно, что при энергиях 3·10 18 –3·10 19 эВ показатель дифференциального энергетического спектра уменьшился до значения 2,7–2,8, именно такого, который наблюдается для галактических космических лучей, когда энергии частиц гораздо меньше предельно возможных для галактических ускорителей. Не служит ли это указанием на то, что при ультравысоких энергиях основной поток частиц создают ускорители внегалактического происхождения с максимальной энергией значительно больше галактической? Излом в спектре галактических космических лучей показывает, что вклад внегалактических космических лучей резко меняется при переходе от области умеренных энергий 10 14 –10 16 эВ, где он примерно в 30 раз меньше вклада галактических (спектр, обозначенный на рисунке пунктиром), к области ультравысоких энергий, где он становится доминирующим.

В последние десятилетия накоплены многочисленные астрономические данные о внегалактических объектах, способных ускорять заряженные частицы до энергий гораздо больше 10 19 эВ. Очевидным признаком того, что объект размером D может ускорять частицы до энергии E , служит наличие на всём протяжении этого объекта магнитного поля В такого, что гирорадиус частицы меньше D . К таким источникам-кандидатам относятся радиогалактики (испускающие сильные радиоизлучения); ядра активных галактик, содержащие чёрные дыры; сталкивающиеся галактики. Все они содержат струи газа (плазмы), движущиеся с огромными скоростями, приближающимися к скорости света. Такие струи играют роль ударных волн, необходимых для работы ускорителя. Чтобы оценить их вклад в наблюдаемую интенсивность космических лучей, нужно учесть распределение источников по расстояниям от Земли и потери энергии частиц в межгалактическом пространстве. До открытия фонового космического радиоизлучения межгалактическое пространство казалось «пустым» и прозрачным не только для электромагнитного излучения, но и для частиц ультравысокой энергии. Плотность газа в межгалактическом пространстве, по астрономическим данным, настолько мала (10 –29 г/см 3), что даже на огромных расстояниях в сотни миллиардов световых лет (10 24 м) частицы не встречают ядер атомов газа. Однако, когда оказалось, что Вселенная наполнена мало энергичными фотонами (примерно 500 фотонов/см 3 с энергией E ф ~10 –3 эВ), оставшимися после Большого взрыва, стало ясно, что протоны и ядра с энергией больше E ~5·10 19 эВ, предела Грейзена-Зацепина-Кузьмина (ГЗК), должны взаимодействовать с фотонами и на пути более десятков миллионов световых лет терять бо льшую часть своей энергии. Таким образом, подавляющая часть Вселенной, находящаяся на расстояниях более 10 7 световых лет от нас, оказалась недоступной для наблюдения в лучах с энергией более 5·10 19 эВ. Последние экспериментальные данные о спектре космических лучей ультравысокой энергии (установка HiRes, обсерватория Пьер Оже) подтверждают существование этого энергетического предела для частиц, наблюдаемых с Земли.

Как видно, изучать происхождение космических лучей ультравысокой энергии чрезвычайно трудно: основная часть возможных источников космических лучей самых высоких энергий (выше предела ГЗК) находятся столь далеко, что частицы на пути к Земле теряют приобретённую в источнике энергию. А при энергиях меньше предела ГЗК отклонение частиц магнитным полем Галактики ещё велико, и направление прихода частиц вряд ли сможет указать положение источника на небесной сфере.

В поиске источников космических лучей ультравысокой энергии используют анализ корреляции экспериментально измеренного направления прихода частиц с достаточно высокими энергиями - такими, что поля Галактики несильно отклоняют частицы от направления на источник. Установки предыдущего поколения пока не дали убедительных данных о корреляции направления прихода частиц с координатами какого-либо специально выделенного класса астрофизических объектов. Последние данные обсерватории Пьер Оже можно рассматривать как надежду на получение в ближайшие годы данных о роли источников типа AGN в создании интенсивных потоков частиц с энергией порядка предела ГЗК.

Интересно, что на установке AGASA были получены указания на существование «пустых» направлений (таких, где нет никаких известных источников), по которым за время наблюдения приходят две и даже три частицы. Это вызвало большой интерес у физиков, занимающихся космологией - наукой о происхождении и развитии Вселенной, неразрывно связанной с физикой элементарных частиц. Оказывается, что в некоторых моделях структуры микромира и развития Вселенной (теории Большого взрыва) предсказано сохранение в современной Вселенной сверхмассивных элементарных частиц с массой порядка 10 23 –10 24 эВ, из которых должно состоять вещество на самой ранней стадии Большого взрыва. Их распределение во Вселенной не очень ясно: они могут быть либо равномерно распределены в пространстве, либо «притянуты» к массивным областям Вселенной. Главная их особенность в том, что эти частицы нестабильны и могут распадаться на более лёгкие, в том числе на стабильные протоны, фотоны и нейтрино, которые приобретают огромные кинетические энергии - более 10 20 эВ. Места, где сохранились такие частицы (топологические дефекты Вселенной), могут оказаться источниками протонов, фотонов или нейтрино ультравысокой энергии.

Как и в случае галактических источников, существование внегалактических ускорителей космических лучей ультравысокой энергии подтверждают данные детекторов гамма-излучения, например телескопы установки HESS, направленные на перечисленные выше внегалактические объекты - кандидаты в источники космических лучей.

Среди них самыми перспективными оказались ядра активных галактик (AGN) со струями газа. Один из наиболее хорошо изученных на установке HESS объектов - галактика М87 в созвездии Дева, на расстоянии 50 миллионов световых лет от нашей Галактики. В её центре находится чёрная дыра, которая обеспечивает энергией процессы вблизи неё и, в частности, гигантскую струю плазмы, принадлежащей этой галактике. Ускорение космических лучей в М87 прямо подтверждают наблюдения её гамма-излучения, энергетический спектр фотонов которого с энергией 1–10 ТэВ (10 12 –10 13 эВ), наблюдаемый на установке HESS. Наблюдаемая интенсивность гамма-излучения от М87 составляет примерно 3% от интенсивности Краба. С учётом разницы в расстоянии до этих объектов (5000 раз) это означает, что светимость М87 превышает светимость Краба в 25 миллионов раз!

Модели ускорения частиц, созданные для этого объекта, показывают, что интенсивность частиц, ускоряемых в М87, может быть так велика, что даже на расстоянии 50 миллионов световых лет вклад этого источника сможет обеспечить наблюдаемую интенсивность космических лучей с энергией выше 10 19 эВ.

Но вот загадка: в современных данных о ШАЛ по направлению на этот источник нет избытка частиц с энергией порядка 10 19 эВ. А не проявится ли этот источник в результатах будущих космических экспериментов, при таких энергиях, когда дальние источники уже не дают вклада в наблюдаемые события? Ситуация с изломом в энергетическом спектре может повториться ещё раз, например при энергии 2·10 20 . Но на этот раз источник должен быть виден в измерениях направления траектории первичной частицы, так как энергии > 2·10 20 эВ настолько велики, что частицы не должны отклоняться в галактических магнитных полях.

Как видим, после столетней истории изучения космических лучей мы снова ждём новых открытий, на этот раз космического излучения ультравысокой энергии, природа которого пока неизвестна, но может играть важную роль в устройстве Вселенной.

Литература:
1) Добротин Н.А. Космические лучи . - М.: Изд. АН СССР, 1963.
2) Мурзин В.С. Введение в физику космических лучей . - М.: Изд. МГУ, 1988.
3) Панасюк М. И. Странники Вселенной, или Эхо Большого взрыва . - Фрязино: «Век2», 2005.
4) Росси Б. Космические лучи . - М.: Атомиздат, 1966.
5) Хренов Б.А. Релятивистские метеоры // Наука в России, 2001, № 4.
6) Хренов Б.А. и Панасюк М.И. Посланники космоса: дальнего или ближнего? // Природа, 2006, № 2.
7) Хренов Б.А. и Климов П.А. Ожидается открытие // Природа, 2008, № 4.

16 июля 2015 в 00:57

Спросите Итана №14: Самые высокоэнергетические частицы Вселенной

  • Научно-популярное ,
  • Физика
  • Перевод
Результаты моих наблюдений лучше всего объясняет предположение, что излучение огромной проникающей энергии входит в нашу атмосферу сверху.
- Виктор Хесс

Вы можете думать, что мощнейшие ускорители частиц – SLAC, Fermilab, БАК,- источники самых высоких энергий, которые мы сможем увидеть. Но всё, что мы пытаемся сделать на земле, не входит ни в какое сравнение с естественными процессами Вселенной.

Читатель спрашивает:

С тех пор, как я начал в детстве читать комиксы про «Фантастическую четвёрку», мне захотелось побольше узнать о космических лучах. Можете ли вы помочь мне в этом?

Давайте посмотрим.

Ещё до того, как Юрий Гагарин смог оторваться от поверхности нашей планеты, было широко известно, что там, за пределами защиты атмосферы, космос наполнен высокоэнергетическим излучением. Как мы узнали об этом?

Первые подозрения зародились во время простейших экспериментов с электроскопом.


Если вы придадите электрический заряд такому устройству, в котором два металлических листочка соединены друг с другом – они получат одинаковый заряд и будут отталкиваться. Можно было бы ожидать, что со временем заряд уйдёт в окружающих воздух – поэтому вам может прийти в голову изолировать устройство, например, создав вокруг него вакуум.

Но и в этом случае электроскоп разряжается. Даже если вы изолируете его при помощи свинца, он всё равно разрядится. Как выяснили экспериментаторы в начале 20-го века, чем выше вы поднимете электроскоп, тем быстрее он будет разряжаться. Несколько учёных выдвинули гипотезу – разряд происходит из-за высокоэнергетического излучения. Оно имеет высокую проникающую энергию и происхождение за пределами Земли.

В науке принято проверять гипотезы. В 1912 году Виктор Хесс провёл эксперимент с воздушным шаром, в котором он пытался найти эти высокоэнергетические космические частицы. И нашёл их в изобилии, став отцом космических лучей .

Ранние детекторы были удивительно просты. Вы настраиваете особую эмульсию, которая «чувствует» прохождение заряженных частиц через неё, и помещаете всё это в магнитное поле. Когда через это проходят частицы, вы можете узнать две важные вещи:

  • отношение заряда к массе частицы
  • и её скорость
которые зависят от того, как изгибается пути частицы. Это можно рассчитать, если знать силу приложенного магнитного поля.

В 1930-х годах несколько экспериментов, как с ранними наземными ускорителями, так и с детекторами космических лучей, выдали много очень интересной информации. Например, большая часть частиц космического излучения (90%) имела разные уровни энергии - от нескольких мегаэлектровольт, до таких высоких энергий, какие вы только могли измерить! Большая часть оставшихся была альфа-частицами, или ядрами гелия с двумя протонами и нейтронами, с такими же уровнями энергии.

Когда эти космические лучи встречаются с верхней частью земной атмосферы, они взаимодействуют с ней, и порождают каскадные реакции, которые создают дождь высокоэнергетических частиц, включая две новые: позитрон, о существовании которого выдвинул гипотезу в 1930 году Дирак. Это двойник электрона из мира антиматерии, той же массы, но с положительным зарядом, и мюон - нестабильная частица с таким же зарядом, как электрон, но в 206 раз тяжелее. Позитрон был открыт Карлом Андерсеном в 1932, а мюон – им и его студентом Сетом Неддермайером в 1936, но первый позитрон был открыт Полом Кюнзе несколькими годами ранее, о чём история почему-то забыла .

Удивительная вещь: если вы вытяните свою руку параллельно земле, то каждую секунду через неё будет проходить примерно 1 мюон.

Каждый мюон, проходящий через вашу руку, рождается в дожде космических лучей и каждый из них подтверждает специальную теорию относительности! Видите ли, эти мюоны создаются на высоте около 100 км, но среднее время жизни мюона составляет порядка 2,2 микросекунды. Даже если бы они двигались со скоростью света, им удалось бы пройти не более 660 метров перед распадом. Но из-за искажения времени, из-за того, что время частицы, движущейся со скоростью, близкой к скорости света, замедляется с точки зрения неподвижного наблюдателя, эти быстро двигающиеся мюоны могут пройти весь путь до поверхности земли перед своим распадом.

Если мы перенесёмся в сегодняшний день, то выяснится, что мы точно измерили как количество, так и энергетический спектр этих космических частиц.

Частицы энергии порядка 100 ГэВ встречаются чаще всего, и примерно 1 такая частица проходит через квадратный метр поверхности Земли каждую секунду. И, хотя существуют частицы большей энергии, они встречаются гораздо реже - тем реже, чем больше мы возьмём энергию. К примеру, если взять энергию 10 16 эВ, то такие частицы будут проходить через квадратный метр только раз в год. А самый высокоэнергетические частицы с энергией 5 × 10 10 ГэВ (или 5 × 10 19 эВ) раз в год пройдут через детектор со стороной в 10 км.

Такая идея выглядит довольно странно - и всё же, для ее осуществления есть резон: должно же быть ограничение энергии космических лучей и ограничение скорости протонов во Вселенной ! Ограничения энергии, которую мы можем придать протону, может и не быть: можно ускорять заряженные частицы, используя магнитные поля, и самые крупные и активные чёрные дыры во Вселенной могут разогнать протоны до энергий, гораздо больших, чем мы наблюдали.

Но они должны путешествовать по Вселенной, чтобы добраться до нас, а Вселенная заполнена большим количеством холодного, низкоэнергетического излучения – фоновым космическим излучением.

Высокоэнергетические частицы создаются только в районах нахождения самых массивных и активных чёрных дыр во Вселенной, а все они находятся очень далеко от нашей галактики. И если возникнет частица с энергией превышающей 5 × 10 10 ГэВ, она сможет пройти не более нескольких миллионов световых лет, пока один из фотонов, оставшихся от Большого взрыва, не провзаимодействует с ней, получив пион. Избыточная энергия будет излучена, а оставшаяся энергия упадёт до ограничения космической энергии, известного, как Предел Грайзена - Зацепина - Кузьмина.

Поэтому мы сделали то единственное, что кажется физикам разумным: построили нереально огромный детектор, и начали искать частицы!

Обсерватория им. Пьера Оже занимается именно этим: подтверждает, что существуют космические лучи, достигающие, но не преодолевающие это энергетическое ограничение, в 10 миллионов раз превышающее энергии, достигаемые на БАК! Это значит, что самые быстрые протоны, которые мы только встречали, двигаются почти со скоростью света (которая составляет ровно 299,792,458 м/с), но немножко медленнее. Но насколько медленнее?

Быстрейшие протоны, находящиеся как раз на границе ограничения, двигаются со скоростью 299 792 457,999999999999918 метров в секунду. Если вы запустите такой протон и фотон до

Законы сохранения строго выполнялись во всех случаях, описанных в предыдущих главах. Когда один из законов оказывался несовершенным, приходилось интерпретировать его по-другому. Так, старый закон сохранения массы был расширен и превращен в более общий закон сохранения энергии. С другой стороны, когда ожидаемые события в действительности не происходили, придумали новый закон сохранения (как было в случае закона сохранения барионного числа). Однако не всегда легко доказать, что законы сохранения выполняются точно. Особенно загадочная ситуация возникла на заре развития ядерной физики при изучении кинетической энергии частиц, испускаемых радиоактивными веществами.

Энергию?-частицы можно определить, измеряя массы исходного радиоактивного ядра, ?-частицы и конечного ядра. Суммарная масса?-частицы и конечного ядра должна быть немного меньше массы исходного ядра, а энергетический эквивалент недостающей массы равняться кинетической энергии?-частицы. Измерять с высокой точностью массы различных ядер и других частиц физики смогли только в 20-х годах нашего столетия. Тем не менее, некоторые важные выводы относительно энергий частиц они сделали, не зная точного значения масс.

Рассмотрим торий-232, который распадается на?-частицу (гелий-4) и радий-228. Все ядра тория-232 имеют одинаковые массы. Массы всех ядер радия-228 также имеют одинаковую величину, как и массы всех?-частиц. Не зная величину этих масс, все же можно сказать, что каждый раз, когда атом тория-232 испускает?-частицу, дефицит массы должен быть одинаков, а следовательно, должна быть одинакова и кинетическая энергия?-частиц. Другими словами, торий-232 должен испускать?-частицы с одной и той же энергией.

Как же определить кинетическую энергию?-частиц? Известно, что чем больше энергия?-частицы, тем глубже она проникает в вещество. ?-Частицы тормозятся очень тонким слоем твердого вещества, но могут пройти сквозь слой воздуха толщиной в несколько сантиметров. При этом?-частицы непрерывно передают энергию молекулам воздуха, с которыми они сталкиваются, постепенно замедляются и, захватывая электроны, становятся в конце концов обычными атомами гелия. В таком состоянии их уже нельзя обнаружить методами, с помощью которых регистрируются?-частицы, так что фактически они исчезают.

Обнаружить?-частицы можно при помощи пленки химического соединения, называемого сернистым цинком. Каждый раз, когда?-частица налетает на такую пленку, она вызывает слабую вспышку света. Если рядом с источником?-частиц (скажем, кусочком тория-232 в свинцовом контейнере с очень узким отверстием) поместить сцинтилляционный счетчик, то число вспышек будет соответствовать количеству образующихся?-частиц. Если сцинтилляционный счетчик располагать все дальше и дальше от источника, ?-частицы должны будут проходить через все больший и больший слой воздуха, чтобы попасть в него. Если бы?-частицы испускались с различными энергиями, то обладающие наименьшей энергией исчезли бы очень быстро, более «энергичные» ?-частицы прошли бы больший путь в воздухе и т. д. В результате по мере удаления сцинтилляционного счетчика от источника число?-частиц, попадающих в счетчик, должно было бы постепенно уменьшаться. Если бы?-частицы вылетали с одинаковой энергией, все они проходили бы в воздухе одинаковый путь. Следовательно, сцинтилляционный счетчик должен был бы регистрировать одно и то же число частиц по мере удаления от источника, вплоть до некоторой критической точки, за которой он не зарегистрировал бы ни одной вспышки.

Именно это явление наблюдал английский физик Уильям Генри Брэгг в 1904 году. Почти все?-частицы, вылетающие из ядер одного и того же элемента, имели одну и ту же энергию и обладали одинаковой проникающей способностью. Все?-частицы тория-232 проходили слой воздуха толщиной 2,8 см, все?-частицы радия-226- 3,3 см, а?-частицы полония-212 - 8,6 см . На самом деле имеются некоторые отклонения. В 1929 году было обнаружено, что небольшая часть частиц одного и того же радиоактивного ядра может обладать необычайно большой кинетической энергией и большей проникающей способностью, чем остальные. Причина этого в том, что исходное радиоактивное ядро может находиться в одном из возбужденных состояний. В возбужденных состояниях ядра имеют большую энергию, чем в своем нормальном основном состоянии. Когда ядро испускает?-частицу, находясь в возбужденном состоянии, ?-частица получает дополнительную энергию. В результате помимо основной группы?-частиц образуются маленькие группы?-частиц с большей проникающей способностью, по одной группе для каждого возбужденного состояния.

Когда радиоактивное ядро образуется при распаде другого ядра, оно иногда находится в возбужденном состоянии с момента своего образования. Тогда большая часть испускаемых им?-частиц имеет необыкновенно большую энергию, а?-частицы с меньшей энергией образуют небольшие группы. Эти отдельные группы?-частиц (от 2 до 13) с различными энергиями образуют спектр ?-частиц данного ядра. Каждая компонента спектра соответствует, как и предполагали, одному из возбужденных состояний ядра. Итак, закон сохранения энергии?-частиц выполняется, чего нельзя сказать в случае?-частиц.

Энергия?-частицы

Если все выводы, сделанные для?-частиц, были бы применимы к?-частицам и выполнялись бы рассмотренные энергетические соотношения, все образующиеся при распаде ядер?-частицы обладали бы одной и той же кинетической энергией. Однако еще в 1900 году создалось впечатление, что?-частицы испускаются с любой энергией вплоть до некоторого максимального значения. В течение последующих пятнадцати лет доказательства постепенно накапливались, пока не стало совершенно ясно, что энергии?-частиц образуют непрерывный спектр.

Каждое ядро, испуская в процессе распада?-частицу, теряет определенное количество массы. Уменьшение массы должно соответствовать величине кинетической энергии?-частицы. При этом кинетическая энергия?-частицы любого из известных нам радиоактивных ядер не превышает энергии, эквивалентной уменьшению массы. Таким образом, уменьшение массы при любом радиоактивном распаде соответствует максимальному значению кинетической энергии?-частиц, образующихся в процессе этого распада.

Но, согласно закону сохранения энергии, ни одна из?-частиц не должна обладать кинетической энергией меньше энергии, эквивалентной уменьшению массы, т. е. максимальная кинетическая энергия?-частицы должна быть одновременно и минимальной. В действительности это не так. Очень часто?-частицы испускаются с меньшей кинетической энергией, чем следует ожидать, причем максимального значения, соответствующего закону

сохранения энергии, вряд ли достигает хоть одна?-частица. Одни?-частицы обладают кинетической энергией, несколько меньшей максимального значения, другие - значительно меньшей, остальные - намного меньшей. Наиболее распространенная величина кинетической энергии равна одной трети максимального значения. В общем, более половины энергии, которая должна возникать вследствие уменьшения массы при радиоактивных распадах, сопровождающихся образованием?-частиц, нельзя обнаружить.

В двадцатых годах многие физики были склонны уже отказаться от закона сохранения энергии, по крайней мере для тех процессов, в которых образуются?-частицы. Перспектива была тревожной, так как закон оставался справедлив во всех других случаях. Но существует ли другое объяснение этого явления?

В 1931 году Вольфганг Паули предложил следующую гипотезу: ?-частица не получает всю энергию из-за того, что образуется вторая частица, которая уносит остаток энергии. Энергия может распределиться между двумя частицами в любых пропорциях. В некоторых случаях почти вся энергия передается электрону, и тогда он имеет почти максимальную кинетическую энергию, эквивалентную уменьшению массы.

Иногда почти вся энергия передается второй частице, тогда энергия электрона фактически равна нулю. Когда энергия распределяется между двумя частицами более равномерно, электрон имеет промежуточные значения кинетической энергии.

Какая же частица удовлетворяет предположению Паули? Вспомним, что?-частицы возникают всякий раз, когда внутри ядра нейтрон превращается в протон. При рассмотрении превращения нейтрона в протон, несомненно, проще иметь дело со свободным нейтроном. Нейтрон не был открыт, когда Паули впервые предложил свою теорию. Мы же можем воспользоваться преимуществом ретроспективного взгляда.

При распаде свободного нейтрона на протон и электрон, последний вылетает с любой кинетической энергией вплоть до максимальной, которая приблизительно равна 0,78 Мэв . Ситуация аналогична испусканию радиоактивным ядром?-частицы, поэтому при рассмотрении распада свободного нейтрона необходимо учесть частицу Паули.

Обозначим частицу Паули х и попробуем выяснить ее свойства. Запишем реакцию распада нейтрона:

п > р + + е - + х.

Если при распаде нейтрона выполняется закон сохранения электрического заряда, х -частица должна быть нейтральной. Действительно, 0=1–1+0. При распаде нейтрона на протон и электрон потеря массы составляет 0,00029 единиц по атомной шкале масс, что приблизительно равно половине массы электрона. Если бы x -частица получила даже всю энергию, образующуюся в результате исчезновения массы, и если бы вся энергия пошла на образование массы, масса х составляла бы только половину массы электрона. Следовательно, x -частица должна быть легче электрона. На самом деле она должна быть значительно легче, так как обычно электрон получает большую часть выделяющейся энергии, а иногда почти всю. Более того, вряд ли энергия, переданная х -частице, полностью превращается в массу; значительная часть ее переходит в кинетическую энергию х -частицы. С годами оценка массы х -частиц становилась все меньше и меньше. Наконец, стало ясно, что х -частица, как и фотон, не имеет массы, т. е. подобно фотону она распространяется со скоростью света с момента своего возникновения. Если энергия фотона зависит от длины волны, энергия х -частицы зависит от чего-то аналогичного.

Следовательно, частица Паули не имеет ни массы, ни заряда, и становится понятным, почему она остается «невидимкой». Заряженные частицы обычно обнаруживают благодаря ионам, которые они образуют. Незаряженный нейтрон был обнаружен из-за большой массы. Частица без массы и без заряда ставит физика в тупик и лишает его какой бы то ни было возможности поймать и изучить ее.

Вскоре после того, как Паули предположил существование х -частицы, она получила имя. Сначала её хотели назвать «нейтроном», так как она не заряжена, но через год после появления гипотезы Паули Чедвик открыл тяжелую незаряженную частицу, которая получила это имя. Итальянский физик Энрико Ферми, имея в виду, что х -частица намного легче нейтрона Чедвика, предложил назвать х-частицу нейтрино, что по-русски значит «нечто маленькое, нейтральное». Предложение было очень удачным, и с тех пор она так и называется. Обычно нейтрино обозначают греческой буквой? «ню») и распад нейтрона записывают следующим образом:

п > р + + е - + ?..

Нейтрино совершенно необходимо

Гипотеза Паули о существовании нейтрино и последовавшая затем детальная теория рождения нейтрино, созданная Ферми, были по-разному встречены физиками. Никто не желал отказываться от закона сохранения энергии, хотя имелись серьезные сомнения относительно необходимости спасения этого закона с помощью частицы без массы и без заряда, частицы, которую нельзя обнаружить, частицы, единственным основанием для существования которой было просто желание спасти закон сохранения энергии. Некоторые физики считали ее призрачной частицей, своего рода трюком для спасения энергетической «бухгалтерии». Фактически концепция нейтрино была просто способом выражения того, что «закон сохранения энергии не выполняется» . Закон сохранения энергии оказался не единственным, спасенным нейтрино.

Рассмотрим неподвижный нейтрон, т. е. нейтрон с нулевым импульсом относительно наблюдателя. При его распаде суммарный импульс протона и электрона должен равняться нулю, если распад сопровождается образованием только двух частиц. Электрон должен вылететь в одном направлении, а протон точно в противоположном (но с меньшей скоростью, так как его масса больше).

Однако это не так. Электрон и протон испускаются в направлениях, которые образуют определенный угол. Небольшой суммарный импульс в направлении вылета частиц возникает как бы из ничего, и закон сохранения импульса нарушается. Однако, если при этом возникает нейтрино, оно может вылететь в таком направлении, что в точности скомпенсирует суммарный импульс двух других частиц (рис. 6).

Другими словами, закон сохранения импульса выполняется только благодаря нейтрино.

Рис. 6. Распад нейтрона.


Легко видеть, что аналогично обстоит дело и с моментом количества движения. Нейтрон, протон и электрон имеют спин +1/2 или -1/2 каждый. Предположим, что спин нейтрона +1/2. При его распаде суммарный спин протона и электрона должен быть равен +1/2, если закон сохранения момента количества движения справедлив и при распаде образуются только эти две частицы. Возможно ли это? Спины протона и электрона могут быть равны +1/2 и +1/2; +1/2 и -1/2; -1/2 и -1/2, т. е. суммарный спин обеих частиц равен +1, 0 и - 1 соответственно. Он не равен и никогда не может быть равен +1/2 или -1/2, если вначале спин нейтрона был равен -1/2. Короче говоря, если нейтрон распадается только на протон и электрон, закон сохранения момента количества движения нарушается.

Но предположим, что при распаде возникает нейтрино со спином +1/2 или -1/2. Тогда суммарный спин трех возникших при распаде частиц всегда будет равен спину исходного нейтрона. Следовательно, существование нейтрино «спасает», по крайней мере, три закона: закон сохранения энергии, импульса и момента количества движения. Примечательно, что одна и та же частица выполняет тройную работу.

Трудно сказать, что было хуже: признать существование одной загадочной, призрачной частицы или нарушение одного закона сохранения. Значительно легче сделать выбор между призрачной частицей и нарушением сразу трех законов сохранения. Пришлось физикам выбрать призрачную частицу. Постепенно существование нейтрино было признано ядерщиками. Они перестали сомневаться в реальности нейтрино независимо от того, могли его обнаружить или нет.

Сохранение лептонного числа

Нейтрино не только спасает три закона сохранения, но и создает один новый. Чтобы понять, как это происходит, рассмотрим нейтрино применительно к античастицам.

Антинейтрон распадается на антипротон и позитрон (антиэлектрон). Ситуация аналогична распаду нейтрона. Позитрон вылетает с меньшей кинетической энергией, чем должен, позитрон и антипротон не разлетаются во взаимно противоположных направлениях и их спины не складываются надлежащим образом. Добавление нейтрино и в этом случае все сбалансирует.

Возникает, естественно, вопрос: одно и то же ли нейтрино образуется при распаде антинейтрона и при распаде нейтрона?

Нетрудно доказать, что нейтрино бывают разными. Нейтрино, обладающее спином, подобно нейтрону, создает магнитное поле, которое имеет два различных направления. Следовательно, нейтрино и антинейтрино существуют точно так же, как нейтрон и антинейтрон. При распаде нейтрона возникает один из близнецов нейтрино, а при распаде антинейтрона - другой. Но какой из них сопровождает данный распад?

Я уже описал закон сохранения барионного числа, который утверждает, что суммарное барионное число замкнутой системы остается постоянным. Имеется ли аналогичный закон сохранения лептонного числа, по которому суммарное лептонное число замкнутой системы, остается неизменным? Почему нам не потребовать от лептонов того же, что и от барионов? К сожалению, если нейтрино не включить в рассмотрение, то этого сделать нельзя.

Припишем электрону лептонное число +1, а позитрону или антиэлектрону - лептонное число -1. Фотон, являющийся своей собственной античастицей, не может иметь лептонное число ни +1, ни -1, и было бы логично приписать ему нулевое лептонное число. Все барионы также имеют нулевые лептонные числа.

Вернемся снова к распаду нейтрона. Начнем с одного нейтрона, имеющего барионное число 1 и нулевое лептонное число. Предположим, что при распаде нейтрона образуется только протон и электрон. Протон и электрон должны иметь суммарное барионное число 1 и суммарное лептонное число 0, если оба эти числа сохраняются. Действительно, сумма барионных чисел двух частиц равна +1 (т. е. 1 + 0) в соответствии с законом сохранения барионного числа. Суммарное лептонное число протона и электрона тоже равно +1 (т. е. 1 + 0), хотя в начале и реакции лептонное число равнялось нулю. Следовательно, лептонное число не сохраняется.

Предположим, что к лептонам принадлежат нейтрино и антинейтрино с лептонными числами + 1 и -1 соответственно. Тогда при распаде нейтрона на протон, электрон и антинейтрино лептонное число сохраняется (0 + 1–1 = = 0), и распад можно записать следующим образом:

п > р + + е - + "?,

где "? - антинейтрино.

Когда распадается антинейтрон с нулевым лептонным числом, возникают антипротон, позитрон и нейтрино. Лептонные числа трех образовавшихся частиц 0, -1 и +1 соответственно, а их сумма равна нулю:

"п > "р - + "е + + ?.

В свободном состоянии нейтроны и антинейтроны распадаются на протоны и антипротоны, обратная ситуация не имеет места. Однако внутри ядер протоны иногда спонтанно превращаются в нейтроны (например, в случае фосфора-30). Аналогично в антивеществе антипротоны превращаются в антинейтроны.

Когда протон превращается в нейтрон, образуются позитрон и нейтрино:

р + > n +"e + + ? .

Когда же антипротон превращается в антинейтрон, образуются электрон и антинейтрино:

"р - >"n + е - + ? .

В обоих случаях лептонное число сохраняется. Суммируя, можно сказать, что при испускании электрона должно возникать антинейтрино, а при испускании позитрона должно возникать нейтрино, чтобы в конце распада лептонное число равнялось нулю.

Если принимать во внимание нейтрино и антинейтрино, лептонное число сохраняется во всех изученных субатомных процессах. Таким образом, существование нейтрино и антинейтрино не только спасло законы сохранения энергии, импульса и момента количества движения, но и позволило также установить закон сохранения лептонного числа. Поэтому физикам было очень трудно не признать существование этих частиц.

Примечания:

Чем больше проникающая способность?-частиц данного ядра, тем больше дефицит массы в процессе радиоактивного распада и тем больше вероятность этого распада, т. е. чем больше проникающая способность?-частиц, тем меньше период полураспада ядра. Если торий-232 имеет период полураспада 14 миллиардов лет, период полураспада радия-226 - 1620 лет, а полония-212 - три десятимиллионных доли секунды.

В самом деле, если бы я поддался искушению ввести понятие о нейтрино в самом начале книги, было бы трудно доказать, что нейтрино - не плод научного мистицизма. Однако, поскольку первая половина книги подчеркивает значение и важность законов сохранения, сейчас можно показать, что нейтрино, несмотря на все его странные свойства - реальная и совершенно необходимая частица.

Для выяснения особенностей решения уравнения Шредингера, рассмотрим поведение микрочастицы в одномерной бесконечно глубокой потенциальной «яме». Такой вид потенциала взаимодействия в природе не наблюдается, но он наиболее простой и может демонстрировать основные особенности решения (наиболее близок он к потенциалу, используемому при рассмотрении поведения электрона в металле). Такая потенциальная «яма» описывается следующими соотношениями для потенциальной энергии (рис.4):

U = ¥ в областях 1, 3 для x < 0 и x > a; U = 0 в области 2 для 0> x >a.

Рис.4. График потенциала одномерной бесконечно глубокой «ямы».

Запишем стационарное уравнение Шредингера для областей 1, 3 , где U=¥

, (1.14)

его единственно возможное решение j=0. Это означает, что вероятность нахождения частицы в этих областях равна нулю и частица туда проникнуть не может.

Для области 2 стационарное уравнение Шредингера имеет вид

, (1.15)

из теории дифференциальных уравнений следует, что его решение имеет вид

Вследствие требования непрерывности функции j, она должна быть равна нулю в точках x=0 и x=a, что следует из решения для областей 1, 3. Отсюда получается, что должны выполняться соотношения Asin(0)+Bcos(0)=0, Asin(ka)+Bcos(ka)=0 и, согласно математике, это будет при B=0 и ka=pn, где n-целое число. Необходимое также условие нормировки (1.12) в данной задаче имеет вид

, (1.17)

взяв этот интеграл, получаем и в результате имеем конечное выражение для возможных решений уравнения Шредингера в поставленной задаче

. (1.18)

Данное решение показывает, что поведение микрочастицы в одномерной бесконечно глубокой потенциальной «яме» может быть различным в зависимости от значения числа n, его называют квантовым числом и рассматривают как номер возможного состояния микрочастицы.

Рассмотрим графики функции j 2 (рис.5), которая согласно (1.8) определяет вероятность нахождения частицы в разных точках «ямы» для различных состояний.


Рис.5. Графики вероятности нахождения частицы в бесконечно глубокой потенциальной «яме» для n = 1, 2, 3. Горизонтальные, тонкие линии соответствуют значениям энергий состояний (энергетическая диаграмма или уровни возможных энергий системы), толстые линии соответствуют функции j 2 .

Из рисунка 5 видно, что во втором и в третьем состояниях микрочастица не может находиться в некоторых точках «ямы» A,B,C, однако она может находиться между этими точками. Кроме этого, видно, что минимальное значение полной энергии Е 1 , которая в области 2 является кинетической энергией, не равна нулю, это означает что частица находится в непрерывном движении. Такое поведение микрочастицы существенно отличается от поведения макрочастиц и приводит к тому, что в квантовой механике не может быть использовано классическое понятие траектории.


Используя найденные соотношения ka = pn и (1.16), получим выражение для полной энергии частицы

(1.19)

которое показывает, что энергия частицы в разных состояниях различна и строго определена (имеет дискретный спектр). Других значений энергии частица иметь не может, возможные дискретные значения называют квантовыми уровнями энергии. Подобное квантование у микрочастиц может происходить и с другими параметрами: импульсом, моментом импульса.

Если рассмотреть таким же образом более реальную ситуацию, когда частица находится в одномерной потенциальной «яме» конечной глубины (U = Uo в областях 1,3 для x < 0 и x > a; U = 0 в области 2 для 0 > x > a), то, в отличие от случая бесконечно глубокой ямы, функция j 2 не будет равна нулю в областях 1, 3 даже при малых энергиях частицы (рис.6).

Рис.6. Графики вероятности нахождения частицы в потенциальной «яме» конечной глубины для n = 1, 2, 3.

Это означает, что частица может выйти за пределы потенциальной «ямы» даже в случае, когда ее энергия меньше Uo , чего в классической механике происходить не может. Подобное явление наблюдается и при рассмотрении поведения микрочастицы вблизи одномерного потенциального «барьера» (U = 0 в областях 1,3 для x < 0 и x > a; U = Uo в области 2 для 0 > x > a). Если решить уравнение Шредингера в этом случае, то можно обнаружить, что частица с энергией меньшей Uo может проходить сквозь этот «барьер».

Такие явления прохождения сквозь потенциальные барьеры частиц с малой энергией являются чисто квантовыми и называются «туннельными эффектами». Экспериментально эти явления наблюдаются с микрочастицами в различных ситуациях: автоэлектронная эмиссия – выход электронов за пределы металлов при малых температурах, автоионизация – выход электронов из атомов и молекул под действием слабого электрического поля, когда энергии поля бывает недостаточно для вырывания электрона с точки зрения классической механики. В физике элементарных частиц подобное явление наблюдается в радиоактивном излучении при выходе альфа частиц из ядер атомов.

Очень важным для атомной физики является рассмотрение поведения микрочастицы в силовом поле, когда потенциальная энергия зависит от координаты x в соответствии с законом , этот случай соответствует в классической механике гармоническим колебаниям тела массой m с циклической частотой w o (гармонический осциллятор). Примерно такие колебания в мире микрочастиц происходят при движении атомов в молекуле, а также при колебаниях молекул около узлов кристаллической решетке в твердых телах.

В классической механике гармонический осциллятор может иметь любую произвольную полную энергию Е, а его максимальное смещение от положения равновесия (амплитуда колебаний) x o ограничено и связано с энергией соотношением . В квантовой механике для анализа характеристик особенностей движения гармонического осциллятора необходимо решить уравнение Шредингера с данной потенциальной энергией

. (1.20)

Решение такого дифференциального уравнения в аналитическом виде достаточно сложно, но качественные особенности аналогичны предыдущим случаям. На рисунке 7 представлены графики получаемого решения и возможные значения энергий.

Рис.7. Графики вероятности нахождения гармонического осциллятора для n = 0, 1, 2. Горизонтальные, тонкие линии показывают значения энергий состояний (энергетическая диаграмма или уровни возможных энергий системы), толстые линии показывают j 2 , пунктирная – вид потенциала.

Возможные значения для полной энергии при решении определяются формулой

Из этой формулы видно, что полная энергия гармонического осциллятора тоже квантована, а ее минимальная величина при n = 0 отлична от нуля, также как и в предыдущих случаях. Наличие энергии нулевых колебаний – это чисто квантовый эффект, он говорит о том, даже в области нулевой потенциальной энергии у частицы имеется ненулевая кинетическая энергия и ненулевой импульс. Это означает, что микрочастица постоянно двигается и не может находиться в абсолютном покое.

Подтверждение наличия нулевых колебаний было получено в экспериментах по рассеиванию света в кристаллах. Согласно классической теории, при абсолютном нуле температуры по Кельвину колебаний атомов около узлов кристаллической решетки и соответственно рассеивания света, вызываемого этими колебаниями, не должно быть. Эксперименты показывают, что интенсивность рассеянного света при уменьшении температуры уменьшается, но даже при температурах очень близких к абсолютному нулю интенсивность рассеянного света не нулевая, что доказывает наличие нулевых колебаний.

Все выше приведенные варианты решений уравнения Шредингера и наличие в экспериментах эффектов, объясняемых рассмотренными примерами, указывают на необходимость использования квантово-механического описания поведения микрочастиц.

Энергия?-частицы

Если все выводы, сделанные для?-частиц, были бы применимы к?-частицам и выполнялись бы рассмотренные энергетические соотношения, все образующиеся при распаде ядер?-частицы обладали бы одной и той же кинетической энергией. Однако еще в 1900 году создалось впечатление, что?-частицы испускаются с любой энергией вплоть до некоторого максимального значения. В течение последующих пятнадцати лет доказательства постепенно накапливались, пока не стало совершенно ясно, что энергии?-частиц образуют непрерывный спектр.

Каждое ядро, испуская в процессе распада?-частицу, теряет определенное количество массы. Уменьшение массы должно соответствовать величине кинетической энергии?-частицы. При этом кинетическая энергия?-частицы любого из известных нам радиоактивных ядер не превышает энергии, эквивалентной уменьшению массы. Таким образом, уменьшение массы при любом радиоактивном распаде соответствует максимальному значению кинетической энергии?-частиц, образующихся в процессе этого распада.

Но, согласно закону сохранения энергии, ни одна из?-частиц не должна обладать кинетической энергией меньше энергии, эквивалентной уменьшению массы, т. е. максимальная кинетическая энергия?-частицы должна быть одновременно и минимальной. В действительности это не так. Очень часто?-частицы испускаются с меньшей кинетической энергией, чем следует ожидать, причем максимального значения, соответствующего закону

сохранения энергии, вряд ли достигает хоть одна?-частица. Одни?-частицы обладают кинетической энергией, несколько меньшей максимального значения, другие - значительно меньшей, остальные - намного меньшей. Наиболее распространенная величина кинетической энергии равна одной трети максимального значения. В общем, более половины энергии, которая должна возникать вследствие уменьшения массы при радиоактивных распадах, сопровождающихся образованием?-частиц, нельзя обнаружить.

В двадцатых годах многие физики были склонны уже отказаться от закона сохранения энергии, по крайней мере для тех процессов, в которых образуются?-частицы. Перспектива была тревожной, так как закон оставался справедлив во всех других случаях. Но существует ли другое объяснение этого явления?

В 1931 году Вольфганг Паули предложил следующую гипотезу: ?-частица не получает всю энергию из-за того, что образуется вторая частица, которая уносит остаток энергии. Энергия может распределиться между двумя частицами в любых пропорциях. В некоторых случаях почти вся энергия передается электрону, и тогда он имеет почти максимальную кинетическую энергию, эквивалентную уменьшению массы.

Иногда почти вся энергия передается второй частице, тогда энергия электрона фактически равна нулю. Когда энергия распределяется между двумя частицами более равномерно, электрон имеет промежуточные значения кинетической энергии.

Какая же частица удовлетворяет предположению Паули? Вспомним, что?-частицы возникают всякий раз, когда внутри ядра нейтрон превращается в протон. При рассмотрении превращения нейтрона в протон, несомненно, проще иметь дело со свободным нейтроном. Нейтрон не был открыт, когда Паули впервые предложил свою теорию. Мы же можем воспользоваться преимуществом ретроспективного взгляда.

При распаде свободного нейтрона на протон и электрон, последний вылетает с любой кинетической энергией вплоть до максимальной, которая приблизительно равна 0,78 Мэв . Ситуация аналогична испусканию радиоактивным ядром?-частицы, поэтому при рассмотрении распада свободного нейтрона необходимо учесть частицу Паули.

Обозначим частицу Паули х и попробуем выяснить ее свойства. Запишем реакцию распада нейтрона:

п ? р + + е - + х.

Если при распаде нейтрона выполняется закон сохранения электрического заряда, х -частица должна быть нейтральной. Действительно, 0=1–1+0. При распаде нейтрона на протон и электрон потеря массы составляет 0,00029 единиц по атомной шкале масс, что приблизительно равно половине массы электрона. Если бы x -частица получила даже всю энергию, образующуюся в результате исчезновения массы, и если бы вся энергия пошла на образование массы, масса х составляла бы только половину массы электрона. Следовательно, x -частица должна быть легче электрона. На самом деле она должна быть значительно легче, так как обычно электрон получает большую часть выделяющейся энергии, а иногда почти всю. Более того, вряд ли энергия, переданная х -частице, полностью превращается в массу; значительная часть ее переходит в кинетическую энергию х -частицы. С годами оценка массы х -частиц становилась все меньше и меньше. Наконец, стало ясно, что х -частица, как и фотон, не имеет массы, т. е. подобно фотону она распространяется со скоростью света с момента своего возникновения. Если энергия фотона зависит от длины волны, энергия х -частицы зависит от чего-то аналогичного.

Следовательно, частица Паули не имеет ни массы, ни заряда, и становится понятным, почему она остается «невидимкой». Заряженные частицы обычно обнаруживают благодаря ионам, которые они образуют. Незаряженный нейтрон был обнаружен из-за большой массы. Частица без массы и без заряда ставит физика в тупик и лишает его какой бы то ни было возможности поймать и изучить ее.

Вскоре после того, как Паули предположил существование х -частицы, она получила имя. Сначала её хотели назвать «нейтроном», так как она не заряжена, но через год после появления гипотезы Паули Чедвик открыл тяжелую незаряженную частицу, которая получила это имя. Итальянский физик Энрико Ферми, имея в виду, что х -частица намного легче нейтрона Чедвика, предложил назвать х-частицу нейтрино, что по-русски значит «нечто маленькое, нейтральное». Предложение было очень удачным, и с тех пор она так и называется. Обычно нейтрино обозначают греческой буквой? «ню») и распад нейтрона записывают следующим образом:

п ? р + + е - + ?..

Из книги Революция в физике автора де Бройль Луи

Глава III. Атомы и частицы 1. Атомная структура материи Хорошо известно, что древние мыслители неоднократно высказывали предположение о дискретной природе материи. Они пришли к этому, исходя из философской идеи о том, что невозможно осознать бесконечную делимость материи

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

Энергия?-частицы Если все выводы, сделанные для?-частиц, были бы применимы к?-частицам и выполнялись бы рассмотренные энергетические соотношения, все образующиеся при распаде ядер?-частицы обладали бы одной и той же кинетической энергией. Однако еще в 1900 году создалось

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Глава 2. Физика. Почему одни частицы обладают массой, а другие нет? …очертанья грозные событий, Нам предстоящих… У. Шекспир. Троил и Kpeccuдa Пер. Т. Гнедич Физика занимается изучением свойств покоящейся и движущейся материи и различных видов энергии. Связанные с движением

Из книги Вселенная. Руководство по эксплуатации [Как выжить среди черных дыр, временных парадоксов и квантовой неопределенности] автора Голдберг Дэйв

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

IV. Каким образом частицы набирают весь свой вес? Золотой век кварков (t = от 10-12 до 10-8 секунды)Заглядывая все дальше в прошлое, мы наблюдаем общую тенденцию. Вселенная становится все горячее и горячее, частицы - все энергичнее и энергичнее, а это обычно означает, что они

Из книги Достучаться до небес [Научный взгляд на устройство Вселенной] автора Рэндалл Лиза

ЭНЕРГИЯ ИЗ СРЕДЫ - ВЕТРЯК И СОЛНЕЧНЫЙ ДВИГАТЕЛЬ - ДВИЖУЩАЯ ЭНЕРГИЯ ИЗ ЗЕМНОГО ТЕПЛА - ЭЛЕКТРИЧЕСТВО ИЗ ЕСТЕСТВЕННЫХ ИСТОЧНИКОВ Есть множество веществ помимо топлива, которые возможно смогли бы давать энергию. Огромное количество энергии заключено, например, в

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Что такое свет -волны или частицы? Но что же в таком случае представляет собой свет - волны или частицы?После открытия фотоэффекта этот вопрос казался окончательно запутанным и противоречивым. В прежние времена споры о природе света были ясными. Ньютон и его

Из книги Бозон Хиггса. От научной идеи до открытия «частицы Бога» автора Бэгготт Джим

ГЛАВА 14. КАК РАСПОЗНАТЬ ЧАСТИЦЫ Стандартная модель физики элементарных частиц представляет в компактном виде наш нынешний взгляд на элементарные частицы и их взаимодействия (рис. 40) Она включает в себя такие частицы, как верхние и нижние кварки и электроны,

Из книги 8. Квантовая механика I автора Фейнман Ричард Филлипс

Из книги Вселенная! Курс выживания [Среди черных дыр. временных парадоксов, квантовой неопределенности] автора Голдберг Дэйв

Из книги автора

7 Значит, это и есть W-частицы Глава, в которой физики формулируют квантовую хромодинамику, открывают очарованный кварк и находят W– и Z-частицы именно там, где и предсказывалиНаконец-то фрагменты головоломки стали складываться. Оказалось, что загадка существования

Из книги автора

Глава 2 ТОЖДЕСТВЕННЫЕ ЧАСТИЦЫ § 1.Бозе-частицы и ферми-частицы§ 2.Состояния с двумя бозе-частицами§ 3.Состояния с n бозе-частицами§ 4.Излучение и поглощение фотонов§ 5.Спектр абсолютно черного тела§ 6.Жидкий гелий § 7.Принцип запретаПовторить: гл. 41 (вып. 4) «Броуновское

Из книги автора

II. Как открывают субатомные частицы? Если столкнуть друг с другом энергичные протоны, получатся частицы, куда более массивные, чем исходные. Но если частицы, которые создаются в ускорителях, так массивны, зачем вообще нужны ускорители? Наверное, великанские частицы легко

Из книги автора

IV. Каким образом частицы набирают весь свой вес? Золотой век кварков (t = от 10–12 до 10–6 секунды)Заглядывая все дальше в прошлое, мы наблюдаем общую тенденцию. Вселенная становится все горячее и горячее, частицы – все энергичнее и энергичнее, а это обычно означает, что они

Похожие публикации