При каких условиях реальный нитяной маятник. Контрольные вопросы

В природе и технике широко распространены колебания, называемые гармоническими.

Гармоническими являются колебания, которые происходят под действием силы, пропорциональной смещению колеблющейся точки и направленной противоположно этому смещению.

Вы уже знаете, что под действием такой силы происходят колебания пружинного маятника, поэтому при определённых условиях они могут служить примером гармонических колебаний (в частности, при условии, что на них не оказывает заметного влияния сила трения).

С помощью опыта, изображённого на рисунке 63, выясним, по какому закону меняется с течением времени координата колеблющегося пружинного маятника и как выглядит график этой зависимости.

Рис. 63. Опыт по исследованию зависимости от времени координаты пружинного маятника, совершающего колебания

В данном опыте в качестве груза берут какой-нибудь небольшой массивный сосуд с маленьким отверстием снизу (например, воронку), а под него кладут длинную бумажную ленту. Сосуд с предварительно насыпанным в него песком (или налитой красящей жидкостью) приводят в колебательное движение. Если ленту перемещать с постоянной скоростью в направлении, перпендикулярном плоскости колебаний, то на ней останется волнообразная дорожка из песка, каждая точка которой соответствует положению колеблющегося груза в тот момент, когда он проходил над ней.

На рисунке 64 показан вид полученной кривой. Она называется косинусоидой (из курса математики старших классов вы узнаете о том, что аналогичные графики имеют функции типа у = sin х и у = cos x при переменной х). Через точки, соответствующие положению равновесия маятника, проведена ось времени t, а перпендикулярно ей - ось смещения х.

Рис. 64. График зависимости координаты колеблющегося пружинного маятника от времени

Из графика видно, что наибольшие отклонения груза от положения равновесия в обе стороны одинаковы по модулю и равны амплитуде колебаний А.

Маятник начал движение из крайней точки с координатой х = А. За время, равное периоду Т, маятник совершил полное колебание, т. е., миновав положение равновесия, дошёл до противоположной крайней точки с координатой х = -А, на мгновение задержался в ней, изменив направление скорости на противоположное, затем пошёл в обратном направлении и, вторично пройдя через положение равновесия, вернулся в то же самое место, откуда начал движение. Затем начинается следующее колебание и т. д.

Если в ходе опыта был измерен промежуток времени t, за который маятник совершил показанные на графике колебания, то можно определить их период Т, разделив это время на число колебаний: Т = t/N . Зная период, можно найти частоту колебаний: v = 1/T.

График даёт возможность приблизительно определить координату груза в любой момент времени. Например, через ⅓Т от момента начала первого колебания груз находился в точке с координатой x 1 .

Если график зависимости координаты от времени какого-нибудь тела представляет собой синусоиду (косинусоиду), т. е. если координата меняется со временем по закону синуса (косинуса), то в этом случае говорят, что и координата, и само тело совершают гармонические колебания.

  • Периодические изменения во времени физической величины, происходящие по закону синуса или косинуса, называются гармоническими колебаниями

На рисунке 65 изображён опыт, аналогичный рассмотренному выше, только для нитяного маятника. С помощью этого опыта можно показать, что и для нитяного маятника график зависимости координаты от времени тоже представляет собой синусоиду, т. е. что его колебания являются гармоническими.

Рис. 65. Гармонические колебания нитяного маятника

Теоретически колебания нитяного маятника были бы строго гармоническими в том случае, если бы он представлял собой материальную точку, колеблющуюся без трения с малой амплитудой 1 при не меняющемся со временем расстоянии от неё до точки подвеса. (Можно доказать, что только при этих условиях сила, возвращающая точку в положение равновесия, будет прямо пропорциональна смещению, вследствие чего колебания будут происходить по гармоническому закону, т. е. по закону изменения синуса или косинуса.)

  • Материальная точка, колеблющаяся на не меняющемся со временем расстоянии от точки подвеса, называется математическим маятником

Математический маятник - это абстрактная модель, реально таких маятников не бывает.

Практически колебания, близкие к гармоническим, совершает тяжёлый шарик (например, стальной), подвешенный на лёгкой и малорастяжимой нити, длина которой значительно больше диаметра этого шарика, при малой амплитуде и малом трении.

При совершении телом гармонических колебаний не только его координата, но и такие величины, как сила, ускорение, скорость, тоже изменяются по закону синуса или косинуса. Это следует из известных вам законов и формул, в которых указанные величины попарно связаны прямо пропорциональной зависимостью, например F x = -kx (закон Гука), а х = F x /m (второй закон Ньютона). Из этих формул следует, что сила и ускорение достигают наибольших значений, когда колеблющееся тело находится в крайних положениях, где смещение наиболее велико, и равны нулю, когда тело проходит через положение равновесия. Значит, колебательное движение вблизи среднего положения тела наиболее близко к равномерному, а вблизи крайних положений сильно отличается от равномерного движения. Скорость же, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия достигает наибольшего значения.

Вопросы

  • По рисунку 63 расскажите о цели, порядке выполнения и результатах изображённого опыта.
  • Чему соответствуют отрезки ОА и ОТ на графике (см. рис. 64)?
  • Какие колебания называются гармоническими?
  • Что можно показать с помощью опыта, изображённого на рисунке 65?
  • Что называется математическим маятником?
  • При каких условиях реальный нитяной маятник будет совершать колебания, близкие к гармоническим?
  • Как меняются действующая на тело сила, его ускорение и скорость при совершении им гармонических колебаний?

1 Напомним, что под малой подразумевается такая амплитуда, при которой траекторию движения маятника можно считать прямолинейной. Числовое значение амплитуды, удовлетворяющее этому условию, зависит от точности результата, требуемой в решаемой задаче. В большинстве практических задач малой можно считать амплитуду, если угол отклонения не превышает 8°.

Механическая система, которая состоит из материальной точки (тела), висящей на нерастяжимой невесомой нити (ее масса ничтожно мала по сравнению с весом тела) в однородном поле тяжести, называется математическим маятником (другое название - осциллятор). Бывают и другие виды этого устройства. Вместо нити может быть использован невесомый стержень. Математический маятник может наглядно раскрыть суть многих интересных явлений. При малой амплитуде колебания его движение называется гармоническим.

Общие сведения о механической системе

Формула периода колебания этого маятника была выведена голландским ученым Гюйгенсом (1629-1695 гг.). Этот современник И. Ньютона очень увлекался данной механической системой. В 1656 г. он создал первые часы с маятниковым механизмом. Они измеряли время с исключительной для тех времен точностью. Это изобретение стало важнейшим этапом в развитии физических экспериментов и практической деятельности.

Если маятник находится в положении равновесия (висит отвесно), то будет уравновешиваться силой натяжения нити. Плоский маятник на нерастяжимой нити является системой с двумя степенями свободы со связью. При смене всего одного компонента меняются характеристики всех ее частей. Так, если нитку заменить на стержень, то у данной механической системы будет всего 1 степень свободы. Какими же свойствами обладает математический маятник? В этой простейшей системе под воздействием периодического возмущения возникает хаос. В том случае, когда точка подвеса не двигается, а совершает колебания, у маятника появляется новое положение равновесия. При быстрых колебаниях вверх-вниз эта механическая система приобретает устойчивое положение «вверх тормашками». У нее есть и свое название. Ее называют маятником Капицы.

Свойства маятника

Математический маятник имеет очень интересные свойства. Все они подтверждаются известными физическими законами. Период колебаний любого другого маятника зависит от разных обстоятельств, таких как размер и форма тела, расстояние между точкой подвеса и центром тяжести, распределение массы относительно данной точки. Именно поэтому определение периода висящего тела является довольно сложной задачей. Намного легче вычисляется период математического маятника, формула которого будет приведена ниже. В результате наблюдений над подобными механическими системами можно установить такие закономерности:

Если, сохраняя одинаковую длину маятника, подвешивать различные грузы, то период их колебаний получится одинаковым, хотя их массы будут сильно различаться. Следовательно, период такого маятника не зависит от массы груза.

Если при запуске системы отклонять маятник на не слишком большие, но разные углы, то он станет колебаться с одинаковым периодом, но по разным амплитудам. Пока отклонения от центра равновесия не слишком велики, колебания по своей форме будут достаточно близки гармоническим. Период такого маятника никак не зависит от колебательной амплитуды. Это свойство данной механической системы называется изохронизмом (в переводе с греческого «хронос» - время, «изос» - равный).

Период математического маятника

Этот показатель представляет собой период Несмотря на сложную формулировку, сам процесс очень прост. Если длина нити математического маятника L, а ускорение свободного падения g, то эта величина равна:

Период малых собственных колебаний ни в какой мере не зависит от массы маятника и амплитуды колебаний. В этом случае маятник двигается как математический с приведенной длиной.

Колебания математического маятника

Математический маятник совершает колебания, которые можно описать простым дифференциальным уравнением:

x + ω2 sin x = 0,

где х (t) - неизвестная функция (это угол отклонения от нижнего положения равновесия в момент t, выраженный в радианах); ω - положительная константа, которая определяется из параметров маятника (ω = √g/L, где g - это ускорение свободного падения, а L - длина математического маятника (подвес).

Уравнение малых колебаний вблизи положення равновесия (гармоническое уравнение) выглядит так:

x + ω2 sin x = 0

Колебательные движения маятника

Математический маятник, который совершает малые колебания, двигается по синусоиде. Дифференциальное уравнение второго порядка отвечает всем требованиям и параметрам такого движения. Для определения траектории необходимо задать скорость и координату, из которых потом определяются независимые константы:

x = A sin (θ 0 + ωt),

где θ 0 - начальная фаза, A - амплитуда колебания, ω - циклическая частота, определяемая из уравнения движения.

Математический маятник (формулы для больших амплитуд)

Данная механическая система, совершающая свои колебания со значительной амплитудой, подчиняется более сложным законам движения. Для такого маятника они рассчитываются по формуле:

sin x/2 = u * sn(ωt/u),

где sn - синус Якоби, который для u < 1 является периодической функцией, а при малых u он совпадает с простым тригонометрическим синусом. Значение u определяют следующим выражением:

u = (ε + ω2)/2ω2,

где ε = E/mL2 (mL2 - энергия маятника).

Определение периода колебания нелинейного маятника осуществляется по формуле:

где Ω = π/2 * ω/2K(u), K - эллиптический интеграл, π - 3,14.

Движение маятника по сепаратрисе

Сепаратрисой называют траекторию динамической системы, у которой двумерное фазовое пространство. Математический маятник движется по ней непериодически. В бесконечно дальнем моменте времени он падает из крайнего верхнего положения в сторону с нулевой скоростью, затем постепенно набирает ее. В конечном итоге он останавливается, вернувшись в исходное положение.

Если амплитуда колебаний маятника приближается к числу π , это говорит о том, что движение на фазовой плоскости приближается к сепаратрисе. В этом случае под действием малой вынуждающей периодической силы механическая система проявляет хаотическое поведение.

При отклонении математического маятника от положения равновесия с некоторым углом φ возникает касательная силы тяжести Fτ = -mg sin φ. Знак «минус» означает, что эта касательная составляющая направляется в противоположную от отклонения маятника сторону. При обозначении через x смещения маятника по дуге окружности с радиусом L его угловое смещение равняется φ = x/L. Второй закон предназначенный для проекций и силы, даст искомое значение:

mg τ = Fτ = -mg sin x/L

Исходя из этого соотношения, видно, что этот маятник представляет собой нелинейную систему, поскольку сила, которая стремится вернуть его в положение равновесия, всегда пропорциональна не смещению x, а sin x/L.

Только тогда, когда математический маятник осуществляет малые колебания, он является гармоническим осциллятором. Иными словами, он становится механической системой, способной выполнять гармонические колебания. Такое приближение практически справедливо для углов в 15-20°. Колебания маятника с большими амплитудами не является гармоническим.

Закон Ньютона для малых колебаний маятника

Если данная механическая система выполняет малые колебания, 2-й закон Ньютона будет выглядеть таким образом:

mg τ = Fτ = -m* g/L* x.

Исходя из этого, можно заключить, что математического маятника пропорционально его смещению со знаком «минус». Это и является условием, благодаря которому система становится гармоническим осциллятором. Модуль коэффициента пропорциональности между смещением и ускорением равняется квадрату круговой частоты:

ω02 = g/L; ω0 = √ g/L.

Эта формула отражает собственную частоту малых колебаний этого вида маятника. Исходя из этого,

T = 2π/ ω0 = 2π√ g/L.

Вычисления на основе закона сохранения энергии

Свойства маятника можно описать и при помощи закона сохранения энергии. При этом следует учитывать, что маятника в поле тяжести равняется:

E = mg∆h = mgL(1 - cos α) = mgL2sin2 α/2

Полная равняется кинетической или максимальной потенциальной: Epmax = Ekmsx = E

После того как будет записан закон сохранения энергии, берут производную от правой и левой частей уравнения:

Поскольку производная от постоянных величин равняется 0, то (Ep + Ek)" = 0. Производная суммы равняется сумме производных:

Ep" = (mg/L*x2/2)" = mg/2L*2x*x" = mg/L*v + Ek" = (mv2/2) = m/2(v2)" = m/2*2v*v" = mv* α,

следовательно:

Mg/L*xv + mva = v (mg/L*x + m α) = 0.

Исходя из последней формулы находим: α = - g/L*x.

Практическое применение математического маятника

Ускорение изменяется с географической широтой, поскольку плотность земной коры по всей планете не одинакова. Там, где залегают породы с большей плотностью, оно будет несколько выше. Ускорение математического маятника нередко применяют для геологоразведки. В его помощью ищут различные полезные ископаемые. Просто подсчитав количество колебаний маятника, можно обнаружить в недрах Земли каменный уголь или руду. Это связано с тем, что такие ископаемые имеют плотность и массу больше, чем лежащие под ними рыхлые горные породы.

Математическим маятником пользовались такие выдающиеся ученые, как Сократ, Аристотель, Платон, Плутарх, Архимед. Многие из них верили в то, что эта механическая система может влиять на судьбу и жизнь человека. Архимед использовал математический маятник при своих вычислениях. В наше время многие оккультисты и экстрасенсы пользуются этой механической системой для осуществления своих пророчеств или поиска пропавших людей.

Известный французский астроном и естествоиспытатель К. Фламмарион для своих исследований также использовал математический маятник. Он утверждал, что с его помощью ему удалось предсказать открытие новой планеты, появление Тунгусского метеорита и другие важные события. Во время Второй мировой войны в Германии (г. Берлин) работал специализированный Институт маятника. В наши дни подобными исследованиями занят Мюнхенский институт парапсихологии. Свою работу с маятником сотрудники этого заведения называют «радиэстезией».

Математический маят­ник - это материальная точка, подвешенная на невесомой и нерас­тяжимой нити, находящейся в поле тяжести Земли. Математический маятник - это идеализированная модель, правильно описывающая реальный маятник лишь при определенных условиях. Реальный ма­ятник можно считать математическим, если длина нити много больше размеров подвешенного на ней тела, масса нити ничтожна мала по сравнению с массой тела, а деформации нити настолько малы, что ими вообще можно пренебречь.

Колебательную систему в данном случае образуют нить, присо­единенное к ней тело и Земля, без которой эта система не могла бы служить маятником.

где а х ускорение, g – ускорение свободного падения, х - смещение, l – длина нити маятника.

Это уравнение называется урав­нением свободных колебаний математического маятника. Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения:

2) рассматриваются лишь малые колебания маятника с небольшим углом размаха.

Свободные колебания любых систем во всех слу­чаях описываются аналогичными уравнениями.

Причинами свободных колебаний математическо­го маятника являются:

1. Действие на маятник силы натяжения и силы тяжести, пре­пятствующей его смещению из положения равновесия и заставляю­щей его снова опускаться.

2. Инертность маятника, благодаря которой он, сохраняя свою скорость, не останавливается в положении равновесия, а проходит через него дальше.

Период свободных колебаний математического ма­ятника

Период свободных колебаний математического маятника не за­висит от его массы, а определяется лишь длиной нити и ускорением свободного падения в том месте, где находится маятник.

Превращение энергии при гармонических колебаниях

При гармонических колебаниях пружинного маятника проис­ходят превращения потенциальной энергии упруго деформированного тела в его кинетическую энергию , гдеk коэффициент упругости,х - модуль смещения маятника из поло­жения равновесия,m - масса маятника,v - его скорость. В соот­ветствии с уравнением гармонических колебаний:

, .

Полная энергия пружинного маятника:

.

Полная энергия для математического маятника:

В случае математического маятника

Превращения энергии при колебаниях пружинного маятника происходи в соответствии с законом сохранения механической энергии (). При движении маятника вниз или вверх от положения равновесия его потенциальная энергия увеличивается, а кинетическая - уменьшается. Когда маятник проходит положение равно­весия (х = 0), его потенциальная энергия равна нулю и кинетическая энергия маятника имеет наибольшее значение, равное его полной энергии.

Таким образом, в процессе свободных колебаний маятника его потенциальная энергия превращается в кинетическую, кинетическая в потенциальную, потенциальная затем снова в кинетическую и т. д. Но полная механическая энергия при этом остается неизменной.

Вынужденные колебания. Резонанс.

Колебания, происходящие под действием внеш­ней периодической силы, называются вынужден­ными колебаниями . Внешняя периодическая си­ла, называемая вынуждающей, сообщает колеба­тельной системе дополнительную энергию, которая идет на восполнение энергетических потерь, проис­ходящих из-за трения. Если вынуждающая сила изменяется во времени по закону синуса или коси­нуса, то вынужденные колебания будут гармониче­скими и незатухающими.

В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из со­стояния равновесия), в случае вынужден­ных колебаний система поглощает эту энергию от источника внешней периоди­ческой силы непрерывно. Эта энергия восполняет потери, расходуемые на пре­одоление трения, и потому полная энергия колебательной системы no-прежнему ос­тается неизменной.

Частота вынужденных колебаний равна часто­те вынуждающей силы . В случае, когда частота вынуждающей силы υ совпадает с собственной ча­стотой колебательной системы υ 0 , происходит рез­кое возрастание амплитуды вынужденных колеба­ний - резонанс . Резонанс возникает из-за того, что при υ = υ 0 внешняя сила, действуя в такт со свободными колебаниями, все время сонаправлена со скоростью колеблющегося тела и совершает по­ложительную работу: энергия колеблющегося те­ла увеличивается, и амплитуда его колебаний ста­новится большой. График зависимости амплитуды вынужденных колебаний А т от частоты вынужда­ющей силы υ представлен на рисунке, этот график называется резонансной кривой:

Явление резонанса играет большую роль в ря­де природных, научных и производственных про­цессов. Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.

Физическим маятником называется твердое тело, способное совершать колебания под действием силы тяжести относительно неподвижной оси О 1 , не проходящей через его центр тяжести. Таковым является однородный металлический стержень массой m и длиной L, подвешенный на оси О 1 , удаленной от центра масс О на величину l .

Гармонические колебания -- колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному, косинусоидальному) закону.

Физический маятник совершает гармонические колебания , если они происходят в результате воздействия на точку силы, пропорциональной смещению колеблющейся точки от положения равновесия и направленной противоположно этому смещению.

На любое реальное тело, совершающее гармонические колебания, действуют не только квазиупругая сила, но и силы трения или сопротивления, препятствующие движению.

На преодоление трения в опорах и сопротивления окружающей среды, на создание упругих деформаций, возбуждение волн и т.д. требуется энергия. Поэтому полная механическая энергия колеблющейся частицы непрерывно уменьшается, переходя в другие виды энергии в виде тепла, или рассеивается в окружающей среде. Это сразу же скажется на величине амплитуды. Она будет уменьшаться, т.е. колебания постепенно будут затухать, пока не прекратятся совсем.

Колебания называют затухающими , если убыль энергии физической системы не восполняется в процессе ее колебательного движения.

Похожие публикации