Внутренняя энергия дж. Купить диплом о высшем образовании недорого

6.2. Первый закон термодинамики

6.2.1. Внутренняя энергия идеального газа

Внутренняя энергия любого вещества - это энергия теплового движения его молекул и энергия их взаимодействия между собой. Модель идеального газа предполагает отсутствие взаимодействия между его молекулами, поэтому внутренней энергией идеального газа принято считать только энергию теплового движения молекул. Внутренняя энергия газа представляет собой сумму кинетических энергий его молекул и определяется формулой

U = N 〈 E k 〉 ,

где N - число молекул (атомов), N = νN A ; ν - количество вещества; N A - постоянная (число) Авогадро, N A = 6,02 ⋅ 10 23 моль –1 ; 〈 E k 〉 - средняя кинетическая энергия одной молекулы, 〈 E k 〉 = i 2 k T ; i - число степеней свободы; k - постоянная Больцмана, k = 1,38 ⋅ 10 −23 Дж/К; T - абсолютная температура.

Число степеней свободы зависит от количества атомов в молекуле газа и имеет следующие значения:

  • для одноатомного -

i = 3;

  • для двухатомного -

i = 5;

  • для трех- и многоатомного -

i = 6.

В Международной системе единиц внутренняя энергия вещества (газа) измеряется в джоулях (1 Дж).

Внутренняя энергия идеального газа определяется формулой

U = i 2 ν R T ,

где i - число степеней свободы; ν - количество вещества (газа); R - универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T - абсолютная (термодинамическая) температура вещества.

Внутренняя энергия для одно-, двух-, трех- и многоатомных газов определяется следующими формулами:

  • для одноатомного -

U = 3 2 ν R T ;

  • для двухатомного -

U = 5 2 ν R T ;

  • для трех- и многоатомного -

U = 3νRT .

Изменение внутренней энергии газа определяется разностью

ΔU = U 2 − U 1 ,

где U 1 - внутренняя энергия начального состояния газа; U 2 - внутренняя энергия конечного состояния газа.

Изменение внутренней энергии газа связано с изменением кинетической энергии движения его молекул. Изменение кинетической энергии движения молекул вещества, в свою очередь, связано с изменением температуры. Следовательно, изменение внутренней энергии газа определяется изменением его температуры.

Изменение внутренней энергии идеального газа рассчитывается по формуле

Δ U = i 2 ν R (T 2 − T 1) = i 2 ν R Δ T ,

где i - число степеней свободы; ν - количество вещества; R - универсальная газовая постоянная, R ≈ 8,31 Дж/(моль ⋅ К); T 2 - абсолютная температура конечного состояния газа; T 1 - абсолютная температура начального состояния идеального газа; ∆T = T 2 − T 1 .

Изменение внутренней энергии для одно-, двух-, трех- и многоатомных газов определяется следующими формулами:

  • для одноатомного -

Δ U = 3 2 ν R Δ T ;

  • для двухатомного -

Δ U = 5 2 ν R Δ T ;

  • для трех- и многоатомного -

∆U = 3νR ∆T .

Изменение внутренней энергии газа ΔU при различных процессах также различно и показано в таблице (для одно-, двух-, трех- и многоатомных газов):

Внутренняя энергия газа не изменяется (U = const):

  • при изотермическом процессе, так как ΔT = 0;
  • при циклическом процессе, так как в конце процесса газ возвращается в состояние с исходными параметрами; циклическим (круговым, замкнутым) процессом, или циклом, называется процесс, при котором газ, пройдя ряд состояний, возвращается в исходное.

Пример 1. В ходе некоторого процесса давление и объем постоянной массы идеального одноатомного газа изменяются таким образом, что pV 2 = const, где p - давление в паскалях; V - объем в кубических метрах. Во сколько раз уменьшается внутренняя энергия газа при увеличении его объема в 3 раза?

Решение . Внутренняя энергия идеального одноатомного газа определяется следующей формулой:

  • для начального состояния газа -

U 1 = 3 2 ν R T 1 ,

где ν - количество вещества (газа); R - универсальная газовая постоянная, R ≈ 8,31 Дж/(моль ⋅ К); T 1 - температура газа в начальном состоянии;

  • для конечного состояния газа -

U 2 = 3 2 ν R T 2 ,

где T 2 - температура газа в конечном состоянии.

Искомым является отношение

U 1 U 2 = 3 ν R T 1 2 ⋅ 2 3 ν R T 2 = T 1 T 2 .

Найдем отношение температур.

Для этого из уравнения Менделеева - Клапейрона

pV = νRT

выразим давление

p = ν R T V

и подставим полученное выражение в заданный в условии задачи закон:

ν R T V ⋅ V 2 = ν R T V = const , или TV = const.

Заданное в условии соотношение между давлением и объемом эквивалентно полученному соотношению между температурой и объемом.

Для двух состояний газа справедливо тождество

T 1 V 1 = T 2 V 2 ,

где V 1 - объем газа в начальном состоянии; V 2 - объем газа в конечном состоянии.

Отсюда следует, что отношение температур определяется выражением

T 1 T 2 = V 2 V 1 ,

а искомое отношение внутренних энергий газа равно

U 1 U 2 = V 2 V 1 = 3 .

Пример 2. Термоизолированный сосуд, содержащий некоторое количество водорода, движется со скоростью 250 м/с. Как изменится температура газа, если сосуд внезапно остановить? Молярная масса водорода равна 2,0 г/моль. Теплоемкостью сосуда пренебречь.

Решение . Энергия газа в сосуде определяется суммой:

  • для движущегося сосуда -

E 1 = U 1 + W k 1 ,

где U 1 - внутренняя энергия водорода (двухатомного газа) в движущемся сосуде (энергия теплового движения молекул водорода), U 1 = 5νRT 1 /2; ν - количество водорода, ν = m /M ; m - масса водорода; M - молярная масса водорода, M = 2,0 г/моль; T 1 - начальная температура водорода; R - универсальная газовая постоянная, R = = 8,31 Дж/(моль ⋅ К); W k 1 - кинетическая энергия водорода, движущегося вместе с сосудом, W k 1 = mv 2 /2; v - скорость сосуда, v = 250 м/с;

  • для остановившегося сосуда -

E 2 = U 2 + W k 2 ,

где U 2 - внутренняя энергия водорода (двухатомного газа) в остановившемся сосуде, U 2 = 5νRT 2 /2; T 2 - конечная температура водорода; W k 2 - кинетическая энергия водорода, остановившегося вместе с сосудом, W k 2 = 0.

По условию задачи обмена энергией между газом в сосуде и окружающей средой не происходит, так как сосуд является термоизолированным; поэтому энергия газа сохраняется

E 1 = E 2 ,

или, в явном виде, -

U 1 + W k 1 = U 2 + W k 2 .

Подстановка в полученное равенство выражений для внутренней и кинетической энергий газа в сосуде дает

5 m R T 1 2 M + m v 2 2 = 5 m R T 2 2 M .

Искомая разность температур определяется формулой

Δ T = v 2 M 5 R .

Вычислим:

Δ T = (250) 2 ⋅ 2,0 ⋅ 10 − 3 5 ⋅ 8,31 = 3,0 К.

При внезапной остановке сосуда, движущегося с указанной скоростью, температура содержащегося в нем водорода повышается на 3,0 К.

Основы термодинамики

Термодинамика изучает процессы и явления, происходящие в природе и технике, с точки зрения преобразования энергии, в том числе внутренней энергии тел.

Термодинамическая система – это совокупность тел, способных обмениваться энергией между собой и с другими системами. Замкнутая термодинамическая система не обменивается энергией с другими системами.

Каждое тело имеет вполне определенную структуру, оно состоит из частиц, которые хаотически движутся и взаимодействуют друг с другом, поэтому любое тело обладает внутренней энергией.

Внутренняя энергия - это величина, характеризующая собственное состояние тела, т. е. энергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц.

Внутренняя энергия идеального газа складывается только из энергии движения молекул, так как взаимодействием молекул можно пренебречь. Внутренняя энергия одноатомного идеального газа определяется по формуле U = 3/2 m/М RT. Внутренняя энергия одного моля одноатомного идеального газа:

Внутреннюю энергию можно изменить двумя способами: путем теплопередачи и путем совершения механической работы
Теплопередача - это изменение внутренней энергии без совершения работы: энергия передается от более нагретых тел к менее нагретым. Теплопередача бывает трех видов: теплопроводность (непосредственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела); конвекция (перенос энергии потоками жидкости или газа) и излучение (перенос энергии электромагнитными волнами). Мерой переданной энергии при теплопередаче является количество теплоты (Q). Принято считать, что Q > 0 , если тело получает энергию, и Q < 0 , если тело отдает свою энергию

При совершении механической работы должно происходить направленное перемещение тел под действием сил, например, перемещение поршня в цилиндре с газом. Если газ расширяется, то сила давления газа на поршень совершает положительную работу (A > 0 ) за счет внутренней энергии газа. Если внешние силы больше силы давления газа, то газ сжимается и работа газа будет отрицательной (A < 0 ), при этом внутренняя энергия увеличивается.

При изобарном нагревании газ совершает работу над внешними силами , где V1 и V2 - начальный и конечный объемы газа. Если процесс не является изобарным, величина работы может быть определена площадью фигуры ABCD, заключенной между линией, выражающей зависимость p(V), и начальным и конечным объемами газа V

Первый закон термодинамики :

изменение внутренней энергии замкнутой системы равно сумме количества теплоты, переданной системе, и работы внешних сил, совершенной над системой. ,



где - изменение внутренней энергии, Q - количество теплоты, переданное системе, А - работа внешних сил. А*-работа самой системы, т.е.работа газа. Если система сама совершает работу и получает или отдает теплоту, то изменение ее внутренней энергии∆U = Q – A .

Применение первого закона термодинамики к изопроцессам
В изотермическом процессе температура постоянная, следовательно, внутренняя энергия не меняется. Тогда уравнение первого закона термодинамики примет вид: , т. е. количество теплоты, переданное системе, идет на совершение работы при изотермическом расширении, именно поэтому температура не изменяется.
В изобарном процессе газ расширяется и количество теплоты, переданное газу, идет на увеличение его внутренней энергии и на совершение им работы: .
При изохорном процессе газ не меняет своего объема, следовательно, работа им не совершается, т. е. А = 0, и уравнение первого закона имеет вид , т. е. переданное количество теплоты идет на увеличение внутренней энергии газа.
Адиабатным называют процесс , протекающий без теплообмена с окружающей средой. Q = 0, следовательно, газ при расширении совершает работу за счет уменьшения его внутренней энергии, следовательно, газ охлаждается,

Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

где C V – молярная теплоемкость газа при постоянном объеме.

2. Изобарический процесс происходит при постоянном давлении р = const.

Первый закон термодинамики для изобарического процесса записывается так:

(10)

т.е. все члены сохраняются.

В этом случае количество теплоты, необходимое для нагревания газа находится так

где С р – молярная теплоемкость газа при постоянном давлении.

Учитывая, что изменение внутренней энергии газа вычисляется по формуле (9), а работа может быть найдена из уравнения Менделеева-Клапейрона:

первый закон термодинамики можно переписать в виде:

(13)

Из последнего выражения находится связь молярных теплоемкостей С р и C V

где R = 8,31 Дж/(моль × К) – универсальная газовая постоянная.

Из уравнения (14), называемого уравнением Майэра, видно, что С Р > C V .

Большее значение С Р по сравнению с C V объясняется тем, что для нагревания 1 моля газа на 1 К при постоянном давлении требуется подвести больше тепла, чем для нагревания при постоянном объеме, так как часть тепла при изобарном нагревании должна пойти на совершение работы.

3. Изотермический процесс происходит при постоянной температуре T = const.

Первый закон термодинамики для изотермического процесса записывается так:

т.е. все тепло, подведенное к газу, идет только на совершение им работы, так как изменение внутренней энергии, ввиду постоянства температуры, равно нулю.

(16)

Теплоемкость в изотермическом процессе равна С Т = ¥.

Связь теплоемкости газов с числом степеней свободы его молекул

Согласно классической теории теплоемкостей газов молярные теплоемкости газов С Р и C V могут быть определены, если известно число степеней свободы i молекул данного вида. Под числом степеней свободы подразумевают число независимых координат, которые необходимо задать для того, чтобы полностью определить положение тела или частицы тела в пространстве. У одноатомных газов, молекулы которых состоят из одного атома (аргон, гелий), движение каждой молекулы описывается тремя независимыми координатами x , y , z , то есть каждая молекула обладает тремя степенями свободы.

Молекула двухатомного газа (водород, азот, кислород, окись углерода и др.) обладает пятью степеней свободы, т.к. кроме трех поступательных движений, она может совершать еще два вращательных движения вокруг

двух взаимно перпендикулярных осей, составляющих прямой угол с линией, соединяющей оба атома. Если расстояние между атомами в двухатомной молекуле может меняться (квазиупругая молекула), т.е. атомы совершают колебательное движение, то такая молекула обладает шестью степенями свободы. Три степени свободы соответствуют поступательному, две – вращательному и одна – колебательному движению атомов молекулы.

Молекулы трехатомного газа (если центры трех атомов не расположены на одной прямой) и многоатомных газов обладают шестью степенями свободы: из них три относятся к поступательному движению и три – к вращательному движению.

В основе классической теории теплоемкости лежит закон равномерного распределения энергии по степеням свободы, позволяющий определить среднее значение энергии одной молекулы.

Средняя кинетическая энергия поступательного движения молекулы одноатомного идеального газа пропорциональна его абсолютной температуре

(17)

Отсюда следует, это энергия, приходящаяся на одну степень свободы поступательного движения, равна . Следовательно, молекула, обладающая i степенями свободы, имеет энергию

где – постоянная Больцмана ( = 1,38 × 10 -23 Дж/К).

Тогда внутренняя энергия одного моля идеального газа будет

, (18)

где N A – число молекул в моле идеального газа.

Дифференцируя это выражение по температуре, получим для молярной теплоемкости идеального газа при постоянном объеме

(19)

Подставляя значение C V в уравнение Майера (8), находим выражение для молярной теплоемкости С Р

(20)

В ряде случаев необходимо знать отношение теплоемкостей С Р и C V , которое будет

Из формул (11) и (12) видно, что по классической теории теплоемкость газов не должна зависеть от температуры.

Адиабатный процесс

Адиабатным называют процесс изменения состояния газа, происходящий без теплообмена с окружающей средой. Всякий, быстро протекающий процесс в газе, практически адиабатен. Адиабатный процесс имеет место в двигателях внутреннего сгорания, холодильных установках и т.д.

При адиабатном процессе , и уравнение первого начала термодинамики принимает вид:

Для одного моля газа можно записать

Таким образом, при адиабатном процессе работа может совершаться только за счет изменения запаса внутренней энергии системы. Следовательно, при адиабатном расширении температура газа должна уменьшаться (dT < 0), а при адиабатном сжатии температура должна повышаться (dT > 0). При адиабатном сжатии - расширении изменяются все параметры состояния газа (р , V , T ). Увеличение температуры газа при адиабатном сжатии происходит вследствие того, что работа, затрачиваемая извне на сжатие газа, целиком идет на увеличение его внутренней энергии.

Подставив в уравнение (23) значение из уравнения Менделеева – Клапейрона и разделив переменные, запишем его в виде

или , (24)

Интегрируя и потенцируя выражение (24), получим:

Уравнения (25) являются уравнениями адиабатного процесса и называются уравнениями Пуассона. Поскольку показатель степени адиабаты , кривая адиабатного процесса (адиабата) идет круче, чем изотерма .

Описание установки и метода измерений

Для определения отношения теплоемкостей используется метод, основанный на адиабатном расширении газа.

Воздух, заключенный в сосуд, последовательно проходит через три состояния (рис. 1). Первое состояние характеризуется параметрами р 1 V 1 T 1 . Второе состояние газа определяется параметрами р 2 V 2 T 2 . Третьему состоянию соответствуют параметры р 3 V 2 T 1 . Из первого во второе состояние газ переходит путем адиабатного расширения. Из второго в третье состояние газ переходит изохорно.

В адиабатном процессе 1-2 давление и объем газа по уравнению Пуассона связаны следующими соотношениями:

Начальное и конечное состояния газа характеризуются одной и той же температурой, поэтому на основании закона Бойля-Мариотта получаем

Решая уравнения (26) и (27) относительно , получим

(28)



Рис. 1

Так как давление р 1 , р 2 , р 3 отличаются друг от друга незначительно, при приближенном вычислении разности логарифмов в формуле (28) можно заменить разностями самих чисел

В проводимом эксперименте давление р 2 равно атмосферному, а давления р 1 и р 3 превышают атмосферное давление р 2 на величины, определяемые высотами столбов жидкости в манометре h 1 и h 2 соответственно. С учетом этого формула (29) для расчета значения примет вид

Измерительная установка для определения состоит из стеклянного баллона большой емкости 1, крана 3, открытого жидкостного манометра 4 и ручного нагнетательного насоса 2 (рис. 2).



Если в баллон при открытом кране 3 накачивается воздух, то давление его в баллоне повышается и становится выше атмосферного на величину h 1 , указываемую манометром. Процесс 1-2 (см. рис. 1) осуществляется открыванием крана 3 с тем, чтобы давление в баллоне сравнялось с атмосферным. Затем идет процесс изохорического нагревания 2-3, в результате которого давление повышается и превышает атмосферное на величину h 2 .

Порядок выполнения работы

1. Открывают кран 3.

2. Насосом 2 нагнетают воздух в баллон и краном 3 отключают его от установки. (Во избежание выброса жидкости из манометра нужно делать 2-3 качания).

3. После того, как температура в баллоне станет равной температуре окружающей среды (давление в баллоне перестанет меняться); производят отсчет разности уровней жидкости в манометре h 1 (снимают показания ма-

нометра в правом и левом коленах L 1 и L 2 , берут их сумму или разность в зависимости от положения нуля отсчета).

4. Открыванием крана 3 дают воздуху, находящемуся в баллоне, достаточно быстро, а, следовательно, адиабатно расширяться до выравнивания давления в баллоне с атмосферным давлением. Кран 3 закрывают в момент, когда прекратится звук, возникающий при выходе воздуха, или же в момент, когда уровни жидкости в обоих коленах сравняются.

5. Как только газ, охлажденный при адиабатном расширении, нагреется до комнатной температуры (примерно через 2-3 минуты после закрытия крана 3), отсчитывают показания манометра L 3 и L 4 и находят h 2 .

6. Вычисляется значение по формуле (30).

7. Опыт повторяют не менее десяти раз при различных избыточных давлениях воздуха (значениях h 1 ).

Обработка результатов измерений

1. Результаты проведенных измерений и вычислений записываются в таблицу.

Значения L 1 , L 2 , L 3 , L 4 , h 1 , h 2 измеряются в миллиметрах столба жидкости, налитой в манометр.

2. Вычисляется среднее значение .

Наряду с механической энергией, любое тело (или система) обладает внутренней энергией. Внутренняя энергия – энергия покоя. Она складывается из теплового хаотического движения молекул, составляющих тело, потенциальной энергии их взаимного расположения, кинетической и потенциальной энергии электронов в атомах, нуклонов в ядрах и так далее.

В термодинамике важно знать не абсолютное значение внутренней энергии, а её изменение.

В термодинамических процессах изменяется только кинетическая энергия движущихся молекул (тепловой энергии недостаточно, чтобы изменить строение атома, а тем более ядра). Следовательно, фактически под внутренней энергией в термодинамике подразумевают энергию теплового хаотического движения молекул.

Внутренняя энергия U одного моля идеального газа равна:

Таким образом, внутренняя энергия зависит только от температуры. Внутренняя энергия U является функцией состояния системы, независимо от предыстории.

Понятно, что в общем случае термодинамическая система может обладать как внутренней, так и механической энергией, и разные системы могут обмениваться этими видами энергии.

Обмен механической энергией характеризуется совершенной работой А, а обмен внутренней энергией – количеством переданного тепла Q.

Например, зимой вы бросили в снег горячий камень. За счёт запаса потенциальной энергии совершена механическая работа по смятию снега, а за счёт запаса внутренней энергии снег был растоплен. Если же камень был холодный, т.е. температура камня равна температуре среды, то будет совершена только работа, но не будет обмена внутренней энергией.

Итак, работа и теплота не есть особые формы энергии. Нельзя говорить о запасе теплоты или работы. Это мера переданной другой системе механической или внутренней энергии. Вот о запасе этих энергий можно говорить. Кроме того, механическая энергия может переходить в тепловую энергию и обратно. Например, если стучать молотком по наковальне, то через некоторое время молоток и наковальня нагреются (это пример диссипации энергии).

Можно привести ещё массу примеров превращения одной формы энергии в другую.

Опыт показывает, что во всех случаях, превращение механической энергии в тепловую и обратно совершается всегда в строго эквивалентных количествах. В этом и состоит суть первого начала термодинамики, следующего из закона сохранения энергии.

Количество теплоты, сообщаемой телу, идёт на увеличение внутренней энергии и на совершение телом работы:

, (4.1.1)

– это и есть первое начало термодинамики , или закон сохранения энергии в термодинамике.

Правило знаков: если тепло передаётся от окружающей среды данной системе, и если система производит работу над окружающими телами, при этом . Учитывая правило знаков, первое начало термодинамики можно записать в виде:

В этом выражении U – функция состояния системы; dU – её полный дифференциал, а δQ и δА таковыми не являются. В каждом состоянии система обладает определенным и только таким значением внутренней энергии, поэтому можно записать:

,

Важно отметить, что теплота Q и работа А зависят от того, каким образом совершен переход из состояния 1 в состояние 2 (изохорически, адиабатически и т.д.), а внутренняя энергия U не зависит. При этом нельзя сказать, что система обладает определенным для данного состояния значением теплоты и работы.

Из формулы (4.1.2) следует, что количество теплоты выражается в тех же единицах, что работа и энергия, т.е. в джоулях (Дж).

Особое значение в термодинамике имеют круговые или циклические процессы, при которых система, пройдя ряд состояний, возвращается в исходное. На рисунке 4.1 изображен циклический процесс 1–а –2–б –1, при этом была совершена работа А.


Рис. 4.1

Так как U – функция состояния, то

(4.1.3)

Это справедливо для любой функции состояния.

Если то согласно первому началу термодинамики , т.е. нельзя построить периодически действующий двигатель, который совершал бы бóльшую работу, чем количество сообщенной ему извне энергии. Иными словами, вечный двигатель первого рода невозможен. Это одна из формулировок первого начала термодинамики.

Следует отметить, что первое начало термодинамики не указывает, в каком направлении идут процессы изменения состояния, что является одним из его недостатков.

Темы кодификатора ЕГЭ : внутренняя энергия, теплопередача, виды теплопередачи.

Частицы любого тела - атомы или молекулы - совершают хаотическое непрекращающееся движение (так называемое тепловое движение ). Поэтому каждая частица обладает некоторой кинетической энергией.

Кроме того, частицы вещества взаимодействуют друг с другом силами электрического притяжения и отталкивания, а также посредством ядерных сил. Стало быть, вся система частиц данного тела обладает ещё и потенциальной энергией.

Кинетическая энергия теплового движения частиц и потенциальная энергия их взаимодействия вместе образуют новый вид энергии, не сводящийся к механической энергии тела (т.е. кинетической энергии движения тела как целого и потенциальной энергии его взаимодействия с другими телами). Этот вид энергии называется внутренней энергией.

Внутренняя энергия тела - это суммарная кинетическая энергия теплового движения его частиц плюс потенциальная энергия их взаимодействия друг с другом .

Внутренняя энергия термодинамической системы - это сумма внутренних энергий тел, входящих в систему .

Таким образом, внутреннюю энергию тела образуют следующие слагаемые.

1. Кинетическая энергия непрерывного хаотического движения частиц тела.
2. Потенциальная энергия молекул (атомов), обусловленная силами межмолекулярного взаимодействия.
3. Энергия электронов в атомах.
4. Внутриядерная энергия.

В случае простейшей модели вещества - идеального газа - для внутренней энергии можно получить явную формулу.

Внутренняя энергия одноатомного идеального газа

Потенциальная энергия взаимодействия частиц идеального газа равна нулю (напомним, что в модели идеального газа мы пренебрегаем взаимодействием частиц на расстоянии). Поэтому внутренняя энергия одноатомного идеального газа сводится к суммарной кинетической энергии поступательного (у многоатомного газа приходится ещё учитывать вращение молекул и колебания атомов внутри молекул) движения его атомов. Эту энергию можно найти, умножив число атомов газа на среднюю кинетическую энергию одного атома:

Мы видим, что внутренняя энергия идеального газа (масса и химический состав которого неизменнны) является функцией только его температуры. У реального газа, жидкости или твёрдого тела внутренняя энергия будет зависеть ещё и от объёма - ведь при изменении объёма изменяется взаимное расположение частиц и, как следствие, потенциальная энергия их взаимодействия.

Функция состояния

Важнейшее свойство внутренней энергии заключается в том, что она является функцией состояния термодинамической системы. А именно, внутренняя энергия однозначно определяется набором макроскопических параметров, характеризующих систему, и не зависит от «предыстории» системы, т.е. от того, в каком состоянии система находилась прежде и каким конкретно образом она оказалась в данном состоянии.

Так, при переходе системы из одного состояния в другое изменение её внутренней энергии определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода из начального состояния в конечное. Если система возвращается в исходное состояние, то изменение её внутренней энергии равно нулю.

Опыт показывает, что существует лишь два способа изменения внутренней энергии тела:

Совершение механической работы;
теплопередача.

Попросту говоря, нагреть чайник можно только двумя принципиально разными способами: тереть его чем-нибудь или поставить на огонь:-) Рассмотрим эти способы подробнее.

Изменение внутренней энергии: совершение работы

Если работа совершается над телом, то внутренняя энергия тела возрастает.

Например, гвоздь после удара по нему молотком нагревается и немного деформируется. Но температура - это мера средней кинетической энергии частиц тела. Нагревание гвоздя свидетельствует об увеличении кинетической энергии его частиц: в самом деле, частицы разгоняются от удара молотком и от трения гвоздя о доску.

Деформация же есть не что иное, как смещение частиц друг относительно друга; гвоздь после удара испытывает деформацию сжатия, его частицы сближаются, между ними возрастают силы отталкивания, и это приводит к увеличению потенциальной энергии частиц гвоздя.

Итак, внутренняя энергия гвоздя увеличилась. Это явилось результатом совершения над ним работы - работу совершили молоток и сила трения о доску.

Если же работа совершается самим телом, то внутренняя энергия тела уменьшается.

Пусть, например, сжатый воздух в теплоизолированном сосуде под поршнем расширяется и поднимает некий груз, совершая тем самым работу (процесс в теплоизолированном сосуде называется адиабатным . Мы изучим адиабатный процесс при рассмотрении первого закона термодинамики). В ходе такого процесса воздух будет охлаждаться - его молекулы, ударяя вдогонку по движущемуся поршню, отдают ему часть своей кинетической энергии. (Точно так же футболист, останавливая ногой быстро летящий мяч, делает ею движение от мяча и гасит его скорость.) Стало быть, внутренняя энергия воздуха уменьшается.

Воздух, таким образом, совершает работу за счёт своей внутренней энергии: поскольку сосуд теплоизолирован, нет притока энергии к воздуху от каких-либо внешних источников, и черпать энергию для совершения работы воздух может только из собственных запасов.

Изменение внутренней энергии: теплопередача

Теплопередача - это процесс перехода внутренней энергии от более горячего тела к более холодному, не связанный с совершением механической работы . Теплопередача может осуществляться либо при непосредственном контакте тел, либо через промежуточную среду (и даже через вакуум). Теплопередача называется ещё теплообменом .

Различают три вида теплопередачи: теплопроводность, конвекция и тепловое излучение.

Сейчас мы рассмотрим их более подробно.

Теплопроводность

Если железный стержень сунуть одним концом в огонь, то, как мы знаем, долго его в руке не продержишь. Попадая в область высокой температуры, атомы железа начинают колебаться интенсивнее (т.е. приобретают добавочную кинетическую энергию) и наносят более сильные удары по своим соседям.

Кинетическая энергия соседних атомов также возрастает, и теперь уже эти атомы сообщают дополнительную кинетическую энергию своим соседям. Так от участка к участку тепло постепенно распространяется по стержню - от помещённого в огонь конца до нашей руки. Это и есть теплопроводность (рис. 1 )(Изображение с сайта educationalelectronicsusa.com).

Рис. 1. Теплопроводность

Теплопроводность - это перенос внутренней энергии от более нагретых участков тела к менее нагретым за счёт теплового движения и взаимодействия частиц тела .

Теплопроводность разных веществ различна. Высокую теплопроводность имеют металлы: лучшими проводниками тепла являются серебро, медь и золото. Теплопроводность жидкостей гораздо меньше. Газы проводят тепло настолько плохо, что относятся уже к теплоизоляторам: молекулы газов из-за больших расстояний между ними слабо взаимодействуют друг с другом. Вот почему, например, в окнах делают двойные рамы: прослойка воздуха препятствует уходу тепла).

Плохими проводниками тепла являются поэтому пористые тела - такие, как кирпич, вата или мех. Они содержат в своих порах воздух. Недаром кирпичные дома считаются самыми тёплыми, а в мороз люди надевают меховые шубы и куртки с прослойкой пуха или синтепона.

Но если воздух так плохо проводит тепло, то почему тогда прогревается от батареи комната?

Происходит это вследствие другого вида теплопередачи - конвекции.

Конвекция

Конвекция - это перенос внутренней энергии в жидкостях или газах в результате циркуляции потоков и перемешивания вещества .

Воздух вблизи батареи нагревается и расширяется. Действующая на этот воздух сила тяжести остаётся прежней, а выталкивающая сила со стороны окружающего воздуха увеличивается, так что нагретый воздух начинает всплывать к потолку. На его место приходит холодный воздух (тот же процесс, но в куда более грандиозных масштабах, постоянно происходит в природе: именно так возникает ветер), с которым повторяется то же самое.

В результате устанавливается циркуляция воздуха, которая и служит примером конвекции - распространение тепла в комнате осуществляется воздушными потоками.

Совершенно аналогичный процесс можно наблюдать и в жидкости. Когда вы ставите на плиту чайник или кастрюлю с водой, нагревание воды происходит в первую очередь благодаря конвекции (вклад теплопроводности воды тут весьма незначителен).

Конвекционные потоки в воздухе и жидкости показаны на рис. 2 (изображения с сайта physics.arizona.edu).

Рис. 2. Конвекция

В твёрдых телах конвекция отсутствует: силы взаимодействия частиц велики, частицы колеблются вблизи фиксированных пространственных точек (узлов кристаллической решётки), и никакие потоки вещества в таких условиях образоваться не могут.

Для циркуляции конвекционных потоков при отоплении комнаты необходимо, чтобы нагретому воздуху было куда всплывать . Если радиатор установить под потолком, то никакая циркуляция не возникнет - тёплый воздух так под потолком и останется. Именно поэтому нагревательные приборы помещают внизу комнаты. По той же причине чайник ставят на огонь, в результате чего нагретые слои воды, поднимаясь, уступают место более холодным.

Наоборот, кондиционер нужно располагать как можно выше: тогда охлаждённый воздух начнёт опускаться, и на его место будет приходить более тёплый. Циркуляция пойдёт в обратном направлении по сравнению с движением потоков при обогреве комнаты.

Тепловое излучение

Каким образом Земля получает энергию от Солнца? Теплопроводность и конвекция исключены: нас разделяет 150 миллионов километров безвоздушного пространства.

Здесь работает третий вид теплопередачи - тепловое излучение . Излучение может распространяться как в веществе, так и в вакууме. Как же оно возникает?

Оказывается, электрическое и магнитное поля тесно связаны друг с другом и обладают одним замечательным свойством. Если электрическое поле изменяется со временем, то оно порождает магнитное поле, которое, вообще говоря, также изменяется со временем (подробнее об этом будет рассказано в листке про электромагнитную индукцию). В свою очередь переменное магнитное поле порождает переменное электрическое поле, которое опять порождает переменное магнитное поле, которое опять порождает переменное электрическое поле...

В результате развития этого процесса в пространстве распространяется электромагнитная волна -«зацепленные» друг за друга электрическое и магнитное поля. Как и звук, электромагнитные волны обладают скоростью распространения и частотой - в данном случае это частота, с которой колеблются в волне величины и направления полей. Видимый свет - частный случай электромагнитных волн.

Скорость распространения электромагнитных волн в вакууме огромна: км/с. Так, от Земли до Луны свет идёт чуть больше секунды.

Частотный диапазон электромагнитных волн очень широк. Подробнее о шкале электромагнитных волн мы поговорим в соответствующем листке. Здесь отметим лишь, что видимый свет - это крохотный диапазон данной шкалы. Ниже него лежат частоты инфракрасного излучения, выше - частоты ультрафиолетового излучения.

Вспомним теперь, что атомы, будучи в целом электрически нейтральными, содержат положительно заряженные протоны и отрицательно заряженные электроны. Эти заряженные частицы, совершая вместе с атомами хаотическое движение, создают переменные электрические поля и тем самым излучают электромагнитные волны. Эти волны и называются тепловым излучением - в напоминание о том, что их источником служит тепловое движение частиц вещества.

Источником теплового излучения является любое тело. При этом излучение уносит часть его внутренней энергии. Встретившись с атомами другого тела, излучение разгоняет их своим колеблющимся электрическим полем, и внутренняя энергия этого тела увеличивается. Именно так мы и греемся в солнечных лучах.

При обычных температурах частоты теплового излучения лежат в инфракрасном диапазоне, так что глаз его не воспринимает (мы не видим, как мы «светимся»). При нагревании тела его атомы начинают излучать волны более высоких частот. Железный гвоздь можно раскалить докрасна - довести до такой температуры, что его тепловое излучение выйдет в нижнюю (красную) часть видимого диапазона. А Солнце кажется нам жёлто-белым: температура на поверхности Солнца настолько высока , что в спектре его излучения присутствуют все частоты видимого света, да ещё ультрафиолет, благодаря которому мы загораем.

Давайте ещё раз взглянем на три вида теплопередачи (рис. 3 )(изображения с сайта beodom.com).

Рис. 3. Три вида теплопередачи: теплопроводность, конвекция и излучение

Похожие публикации